• 『cs231n』作业1选讲_通过代码理解KNN&交叉验证&SVM


    通过K近邻算法探究numpy向量运算提速

     茴香豆的“茴”字有... ...

    使用三种计算图片距离的方式实现K近邻算法:

    1.最为基础的双循环

    2.利用numpy的broadca机制实现单循环

    3.利用broadcast和矩阵的数学性质实现无循环

    图片被拉伸为一维数组

    X_train:(train_num, 一维数组)

    X:(test_num, 一维数组)

    方法验证

    import numpy as np
    a = np.array([[1,1,1],[2,2,2],[3,3,3]])
    b = np.array([[4,4,4],[5,5,5],[6,6,6],[7,7,7]])
    

    双循环:

    dists = np.zeros((3,4))
    for i in range(3):
        for j in range(4):
            dists[i][j] = np.sqrt(np.sum(np.square(a[i] - b[j])))
    print(dists)
    

     [[  5.19615242   6.92820323   8.66025404  10.39230485]
     [  3.46410162   5.19615242   6.92820323   8.66025404]
     [  1.73205081   3.46410162   5.19615242   6.92820323]]

    单循环:

    dists=np.zeros((3,4))
    for i in range(3):
        dists[i] = np.sqrt(np.sum(np.square(a[i] - b),axis=1))
    print(dists)
    

    [[  5.19615242   6.92820323   8.66025404  10.39230485]
     [  3.46410162   5.19615242   6.92820323   8.66025404]
     [  1.73205081   3.46410162   5.19615242   6.92820323]] 

    无循环:

    r1=(np.sum(np.square(a),axis=1)*(np.ones((b.shape[0],1)))).T
    r2=np.sum(np.square(b),axis=1)*(np.ones((a.shape[0],1)))
    r3=-2*np.dot(a,b.T)
    print(np.sqrt(r1+r2+r3))
    

     [[  5.19615242   6.92820323   8.66025404  10.39230485]
     [  3.46410162   5.19615242   6.92820323   8.66025404]
     [  1.73205081   3.46410162   5.19615242   6.92820323]]

     无循环算法原理:

    (注意,原理图-验证代码-实现程序 的变量并不严格一一对应,均有调整)

    全代码实现如下:

    import numpy as np
    
    class KNearsNeighbor():
        def _init_(self):
            pass
    
        def train(self, x, y):
            self.X_train = x
            self.y_train = y
      
        # 选择使用几个循环体的方式来计算距离
        def predict(self, X, k=1, num_loops=0):
            if num_loops == 0:
                dist = self.compute_distances_no_loops(X)
            elif num_loops == 1:
                dist = self.compute_distances_one_loops(X)
            elif num_loops == 2:
                dist = self.compute_distances_two_loops(X)
            else:
                raise ValueError('Invalid value %d' % num_loops)
            return dist
    
        def compute_distances_two_loops(self, X):
            num_test = X.shape[0]
            num_train = self.X_train.shape[0]
            dists = np.zeros((num_test, num_train))
            for i in range(num_test):
                for j in range(num_train):
                    dists[i][j] = np.sqrt(np.sum(np.square(X[i] - self.X_train[j])))
            return dists
        def compute_distances_one_loops(self, X):
            num_test = X.shape[0]
            num_train = self.X_train.shape[0]
            dists = np.zeros((num_test,num_train))
            for i in range(num_test):
                    dists[i] = np.sqrt(np.sum(np.square(X[i] - self.X_train), axis=1))
            return dists
    
        def compute_distances_no_loops(self, X):
            # num_test = X.shape[0]
            # num_train = self.X_train.shape[0]
            # dists = np.zeros((num_test,num_train))
            dists = np.sqrt(-2*np.dot(X, self.X_train.T) +
                            np.sum(np.square(self.X_train), axis=1)*(np.ones((X.shape[0],1))) +
                                   np.sum(np.square(X), axis=1)*(np.ones(X_train.shape[0],1)).T)
            return dists
    
       # 预测标签
        def predict_labels(self, dists, k=1):
            num_test = dists.shape[0]
            y_pred = np.zeros(num_test)
            for i in range(num_test):
                closest_y = self.y_train[np.argsort(dists[i])[:k]]  # 【【【按照距离给索引排序】取最近的k个索引】按照索引取训练标签】
                y_pred[i] = np.argmax(np.bincount(closest_y))       #  投票,注意np.bincount()和np.argmax()在投票上的妙用
            return y_pred
    

     交叉验证选择超参数k的取值

    We have implemented(实施) the k-Nearest Neighbor classifier(分类) but we set the value k = 5 arbitrarily(武断地). We will now determine the best value of this hyperparameter with cross-validation(交叉验证).

    import numpy as np
    num_folds = 5
    k_choices = [1, 3, 5, 8, 10, 12, 15, 20, 50, 100]
    
    X_train_folds = []
    y_train_folds = []
    ################################################################################
    # TODO:                                                                        #
    # Split up the training data into folds. After splitting, X_train_folds and    #
    # y_train_folds should each be lists of length num_folds, where                #
    # y_train_folds[i] is the label vector for the points in X_train_folds[i].     #
    # Hint: Look up the numpy array_split function.                                #
    ################################################################################
    X_train_folds = np.split(X_train, num_folds)
    y_train_folds = np.split(y_train, num_folds)
    ################################################################################
    #                                 END OF YOUR CODE                             #
    ################################################################################
    
    # A dictionary holding the accuracies for different values of k that we find
    # when running cross-validation. After running cross-validation,
    # k_to_accuracies[k] should be a list of length num_folds giving the different
    # accuracy values that we found when using that value of k.
    k_to_accuracies = {}
    ################################################################################
    # TODO:                                                                        #
    # Perform k-fold cross validation to find the best value of k. For each        #
    # possible value of k, run the k-nearest-neighbor algorithm num_folds times,   #
    # where in each case you use all but one of the folds as training data and the #
    # last fold as a validation set. Store the accuracies for all fold and all     #
    # values of k in the k_to_accuracies dictionary.                               #
    ################################################################################
    
    for k in k_choices:
        k_to_accuracies[k]=np.zeros(num_folds)
        for i in range(num_folds):
            Xtr = np.concatenate(
                (np.array(X_train_folds)[:i],np.array(X_train_folds)[(i+1):]),axis=0)
            ytr = np.concatenate(
                (np.array(y_train_folds)[:i],np.array(y_train_folds)[(i+1):]),axis=0)
            Xte = np.array(X_train_folds)[i]
            yte = np.array(y_train_folds)[i]
            
            # [num_of_folds, num_in_flods, feature_of_x] -> [num_of_pictures, feature_of_x]
            Xtr = np.reshape(Xtr, (X_train.shape[0] * 4 / 5, -1))
            ytr = np.reshape(ytr, (y_train.shape[0] * 4 / 5, -1))
            Xte = np.reshape(Xte, (X_train.shape[0] / 5, -1))
            yte = np.reshape(yte, (y_train.shape[0] / 5, -1))
            
            classifier.train(Xtr, ytr)
            yte_pred = classifier.predict(Xte, k)
            yte_pred = np.reshape(yte_pred, (yte_pred.shape[0], -1))
    
            accuracy = np.sum(yte_pred == yte, dtype=float)/len(yte)   # bool to int,我们需要显示指定为float
            k_to_accuracies[k][i] = accuracy
    ################################################################################
    #                                 END OF YOUR CODE                             #
    ################################################################################
    
    # Print out the computed accuracies
    for k in sorted(k_to_accuracies):
        for accuracy in k_to_accuracies[k]:
            print 'k = %d, accuracy = %f' % (k, accuracy)
    

    SVM支持向量机

    def svm_loss_vectorized(W, X, y, reg):
      """
      Structured SVM loss function, vectorized implementation.
    
      Inputs and outputs are the same as svm_loss_naive.
      """
      
      loss = 0.0
      dW = np.zeros(W.shape) # initialize the gradient as zero
    
      # 向前传播
      scores = X.dot(W)
      scores_correct = scores[np.arange(y.shape[0]),y].reshape(y.shape[0],1)
      margins = np.maximum(0., scores - scores_correct + 1)      # 错误类加上阈值减去正确类得分,满足的置零,不满足的计算loss
      margins[np.arange(y.shape[0]),y] = 0                       # 把上一步正确类参与计算的部分置零
      loss = np.sum(margins)/y.shape[0] + 0.5*reg*np.sum(W*W)
    
      # 反向传播
      margins[margins>0] = 1                         # 类relu反向传播
      row_grad = np.sum(margins, axis=1)
      margins[np.arange(y.shape[0]),y] - row_grad    # 分类器反向都是这样,错误类不动,正确类减去上层梯度
      dW = np.dot(X.T,margins)/y.shape[0] + reg*W
    
      return loss, dW
    
  • 相关阅读:
    Window frames[]集合(转)
    ObjectDataSource 如何传递查询参数
    前台如何解析json格式 以及后台如何生成json格式
    Burrows–Wheeler transform
    windows xp中安装PadWalker
    ORA01207:文件比控制文件更新 旧的控制文件
    如何看懂NCBI BLAST输出结果
    Perl getopts
    blast formatdb 使用方法介绍
    Randfold安装
  • 原文地址:https://www.cnblogs.com/hellcat/p/7007103.html
Copyright © 2020-2023  润新知