• 『计算机视觉』imgaug图像增强库中部分API简介


    https://github.com/aleju/imgaug

    介绍一下官方demo中用到的几个变换,工程README.md已经给出了API简介,个人觉得不好理解,特此单独记录一下:

    import numpy as np
    import imgaug as ia
    import imgaug.augmenters as iaa
    
    
    # random example images
    images = np.random.randint(0, 255, (16, 128, 128, 3), dtype=np.uint8)
    
    # Sometimes(0.5, ...) applies the given augmenter in 50% of all cases,
    # e.g. Sometimes(0.5, GaussianBlur(0.3)) would blur roughly every second image.
    sometimes = lambda aug: iaa.Sometimes(0.5, aug)
    
    # Define our sequence of augmentation steps that will be applied to every image
    # All augmenters with per_channel=0.5 will sample one value _per image_
    # in 50% of all cases. In all other cases they will sample new values
    # _per channel_.
    seq = iaa.Sequential(
        [
            # apply the following augmenters to most images
            iaa.Fliplr(0.5), # horizontally flip 50% of all images
            iaa.Flipud(0.2), # vertically flip 20% of all images
            # crop images by -5% to 10% of their height/width
            sometimes(iaa.CropAndPad(
                percent=(-0.05, 0.1),
                pad_mode=ia.ALL,
                pad_cval=(0, 255)
            )),
            sometimes(iaa.Affine(
                scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # scale images to 80-120% of their size, individually per axis
                translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, # translate by -20 to +20 percent (per axis)
                rotate=(-45, 45), # rotate by -45 to +45 degrees
                shear=(-16, 16), # shear by -16 to +16 degrees
                order=[0, 1], # use nearest neighbour or bilinear interpolation (fast)
                cval=(0, 255), # if mode is constant, use a cval between 0 and 255
                mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples)
            )),
            # execute 0 to 5 of the following (less important) augmenters per image
            # don't execute all of them, as that would often be way too strong
            iaa.SomeOf((0, 5),
                [
                    sometimes(iaa.Superpixels(p_replace=(0, 1.0), n_segments=(20, 200))), # convert images into their superpixel representation
                    iaa.OneOf([
                        iaa.GaussianBlur((0, 3.0)), # blur images with a sigma between 0 and 3.0
                        iaa.AverageBlur(k=(2, 7)), # blur image using local means with kernel sizes between 2 and 7
                        iaa.MedianBlur(k=(3, 11)), # blur image using local medians with kernel sizes between 2 and 7
                    ]),
                    iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)), # sharpen images
                    iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)), # emboss images
                    # search either for all edges or for directed edges,
                    # blend the result with the original image using a blobby mask
                    iaa.SimplexNoiseAlpha(iaa.OneOf([
                        iaa.EdgeDetect(alpha=(0.5, 1.0)),
                        iaa.DirectedEdgeDetect(alpha=(0.5, 1.0), direction=(0.0, 1.0)),
                    ])),
                    iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5), # add gaussian noise to images
                    iaa.OneOf([
                        iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
                        iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
                    ]),
                    iaa.Invert(0.05, per_channel=True), # invert color channels
                    iaa.Add((-10, 10), per_channel=0.5), # change brightness of images (by -10 to 10 of original value)
                    iaa.AddToHueAndSaturation((-20, 20)), # change hue and saturation
                    # either change the brightness of the whole image (sometimes
                    # per channel) or change the brightness of subareas
                    iaa.OneOf([
                        iaa.Multiply((0.5, 1.5), per_channel=0.5),
                        iaa.FrequencyNoiseAlpha(
                            exponent=(-4, 0),
                            first=iaa.Multiply((0.5, 1.5), per_channel=True),
                            second=iaa.ContrastNormalization((0.5, 2.0))
                        )
                    ]),
                    iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
                    iaa.Grayscale(alpha=(0.0, 1.0)),
                    sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
                    sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05))), # sometimes move parts of the image around
                    sometimes(iaa.PerspectiveTransform(scale=(0.01, 0.1)))
                ],
                random_order=True
            )
        ],
        random_order=True
    )
    
    images_aug = seq.augment_images(images)

    Superpixels:生成随机数量的超像素区域,对原图进行替换,直观效果是原图部分区域变得模糊

    各种blur:模糊,对应几种滤波操作

    sharp:字面意思,锐化

    emboss:压印浮凸字体(或图案); 凹凸印

    EdgeDetect:边缘检测

    DirectedEdgeDetect:边缘检测,只检测某些方向的,直观来看和上面的比检测出来的数目会少很多

    DropOut:随机丢弃像素

    CoarseDropout:随机丢弃某位置某通道像素

    Invert:有一定几率将batch中的图片像素取反(或者特定通道取反)

    Add:像素值成比例增加/减小(特指亮度)

    AddToHueAndSaturation:增加色相、饱和度

    Multiply:每个像素随机乘一个数(各不相图),造成局部变亮、局部变暗

    ContrastNormalization:调整对比度,0.5表示和128的差值部分会处以2降低对比度

    FrequencyNoiseAlpha:参数需要两个增强函数,本函数会混合两个增强函数增强后的结果

    Grayscale:灰度图和原图的混合(1意味着全灰度)

  • 相关阅读:
    【2】Java包装类
    【1】Java异常
    【10】Java多态:内部类
    【9】Java多态:接口
    【8】Java多态:抽象类(abstract关键字)
    【7】Java多态:向上转型、向下转型、instanceof运算符
    【6】Java单例模式
    元素定位工具:Chrome浏览器ChroPath插件
    linux添加环境变量
    php导出数据到多个csv并打包压缩
  • 原文地址:https://www.cnblogs.com/hellcat/p/11302840.html
Copyright © 2020-2023  润新知