• 线段树-sum/max/min/区间更新


    写一个板子。

      1 #include <cstdio>
      2 #include <algorithm>
      3 
      4 using namespace std;
      5 
      6 const int maxn = 100000+10;
      7 
      8 #define ROOT     1, 1, N
      9 #define lson(x)  (x<<1)
     10 #define rson(x)  (x<<1|1)
     11 
     12 struct SegmentTree{
     13     int l, r;
     14     int ma, mi, sum;
     15     int lazy;
     16     int lazy_ma, lazy_mi;
     17 }st[maxn << 2];
     18 
     19 int val[maxn],N;
     20 
     21 void push_up(int x){
     22     st[x].sum = st[lson(x)].sum + st[rson(x)].sum;
     23     st[x].ma  = max(st[lson(x)].ma, st[rson(x)].ma);
     24     st[x].mi  = min(st[lson(x)].mi, st[rson(x)].mi);
     25 }
     26 
     27 void push_down(int x, int m){
     28     if(st[x].lazy){
     29         st[lson(x)].sum += (m-(m>>1)) * st[x].lazy;
     30         st[rson(x)].sum += (m>>1) * st[x].lazy;
     31         st[lson(x)].ma += st[x].lazy; st[lson(x)].mi += st[x].lazy;
     32         st[rson(x)].ma += st[x].lazy; st[rson(x)].mi += st[x].lazy;
     33         
     34         st[lson(x)].lazy += st[x].lazy;
     35         st[rson(x)].lazy += st[x].lazy;
     36 
     37         st[x].lazy = 0;
     38     }
     39 }
     40 
     41 void build(int x, int l, int r){
     42     st[x].l = l;st[x].r = r;
     43     st[x].lazy = st[x].lazy_mi = st[x].lazy_ma = 0;
     44 
     45     if(l == r){
     46         st[x].sum = val[l];
     47         st[x].ma = st[x].mi = val[l];
     48         return ;
     49     }
     50     int mid = (l+r)>>1;
     51     build(lson(x), l, mid);
     52     build(rson(x), mid+1, r);
     53     push_up(x);
     54 }
     55 
     56 void update(int L, int R, int c, int x,int l,int r){
     57     if(L <= l && R >= r){
     58         st[x].sum += c * (r-l+1);
     59         st[x].ma += c;
     60         st[x].mi += c;
     61         st[x].lazy += c; 
     62         return ;
     63     }
     64     push_down(x, r-l+1);
     65     
     66     int mid = (l+r)>>1;
     67     if(L <= mid) update(L, R, c, lson(x), l, mid);
     68     if(R > mid) update(L, R, c, rson(x), mid+1, r);
     69     push_up(x);
     70 }
     71 
     72 int query_sum(int L, int R, int x, int l, int r){
     73     if(L <= l && R >= r){
     74         return st[x].sum;
     75     }
     76     push_down(x, r-l+1);
     77 
     78     int mid = (l+r)>>1, res = 0;
     79     if(R <= mid)      res = query_sum(L, R, lson(x), l, mid);
     80     else if(L > mid) res = query_sum(L, R, rson(x), mid+1, r);
     81     else          res = query_sum(L, R, lson(x), l, mid) + query_sum(L, R, rson(x), mid+1, r);
     82     push_up(x);
     83     return res;
     84 }
     85 
     86 int query_max(int L,int R, int x, int l, int r){
     87     if(L <= l && R >= r){
     88         return st[x].ma;
     89     }
     90     push_down(x, r-l+1);
     91 
     92     int mid = (l+r)>>1, res = 0;
     93     if(R <= mid)      res = query_max(L, R, lson(x), l, mid);
     94     else if(L > mid) res = query_max(L, R, rson(x), mid+1, r);
     95     else              res = max(query_max(L, R, lson(x), l, mid), query_max(L, R, rson(x), mid+1, r));
     96     push_up(x);
     97     return res;    
     98 }
     99 
    100 int query_min(int L,int R, int x, int l, int r){
    101     if(L <= l && R >= r){
    102         return st[x].mi;
    103     }
    104     push_down(x, r-l+1);
    105 
    106     int mid = (l+r)>>1, res = 0;
    107     if(R <= mid)      res = query_min(L, R, lson(x), l, mid);
    108     else if(L > mid) res = query_min(L, R, rson(x), mid+1, r);
    109     else              res = min(query_min(L, R, lson(x), l, mid), query_min(L, R, rson(x), mid+1, r));
    110     push_up(x);
    111     return res;    
    112 }
    113 
    114 int T,M;
    115 
    116 int main(){
    117     scanf("%d", &T);
    118     while(T--){
    119         scanf("%d %d
    ", &N, &M);
    120         for(int i=1;i<=N;i++) scanf("%d", &val[i]);
    121         build(ROOT);
    122 
    123         for(int i=0;i<M;i++){
    124             char op[10];
    125             int l, r, c;
    126             scanf("%s", op);
    127             if(op[0] == 'Q' && op[1] == 'S'){
    128                 scanf("%d %d", &l, &r);
    129                 printf("%d
    ", query_sum(l, r, ROOT));
    130             }else if(op[0] == 'Q' && op[1] == 'A'){
    131                 scanf("%d %d", &l, &r);
    132                 printf("%d
    ", query_max(l, r, ROOT));
    133             }else if(op[0] == 'Q' && op[1] == 'I'){
    134                 scanf("%d %d", &l, &r);
    135                 printf("%d
    ", query_min(l, r, ROOT));
    136             }else if(op[0] == 'I'){
    137                 scanf("%d %d %d", &l, &r, &c);
    138                 update(l, r, c, ROOT);
    139             }
    140         }
    141     }
    142 }
  • 相关阅读:
    浏览器兼容性问题
    浏览器对象的属性和方法
    js总结体会
    css样式总结体会
    HTML标签类总结
    如何自动化实现二级域名访问,类似博客
    php
    require.js
    gulp
    javascript
  • 原文地址:https://www.cnblogs.com/helica/p/8683362.html
Copyright © 2020-2023  润新知