• 面试题:Java对象不再使用时,为什么要赋值为null?


    前言

    许多Java开发者都曾听说过“不使用的对象应手动赋值为null“这句话,而且好多开发者一直信奉着这句话;问其原因,大都是回答“有利于GC更早回收内存,减少内存占用”,但再往深入问就回答不出来了。

    鉴于网上有太多关于此问题的误导,本文将通过实例,深入JVM剖析“对象不再使用时赋值为null”这一操作存在的意义,供君参考。本文尽量不使用专业术语,但仍需要你对JVM有一些概念。

    示例代码

    我们来看看一段非常简单的代码:

    public static void main(String[] args) {
        if (true) {
            byte[] placeHolder = new byte[64 * 1024 * 1024];
            System.out.println(placeHolder.length / 1024);
        }
        System.gc();
    }
    

    我们在if中实例化了一个数组placeHolder,然后在if的作用域外通过System.gc();手动触发了GC,其用意是回收placeHolder,因为placeHolder已经无法访问到了。来看看输出:

    65536
    [GC 68239K->65952K(125952K), 0.0014820 secs]
    [Full GC 65952K->65881K(125952K), 0.0093860 secs]
    

    Full GC 65952K->65881K(125952K)代表的意思是:本次GC后,内存占用从65952K降到了65881K。意思其实是说GC没有将placeHolder回收掉,是不是不可思议?

    下面来看看遵循“不使用的对象应手动赋值为null“的情况:

    public static void main(String[] args) {
        if (true) {
            byte[] placeHolder = new byte[64 * 1024 * 1024];
            System.out.println(placeHolder.length / 1024);
            placeHolder = null;
        }
        System.gc();
    }
    

    其输出为:

    65536
    [GC 68239K->65952K(125952K), 0.0014910 secs]
    [Full GC 65952K->345K(125952K), 0.0099610 secs]
    

    这次GC后内存占用下降到了345K,即placeHolder被成功回收了!对比两段代码,仅仅将placeHolder赋值为null就解决了GC的问题,真应该感谢“不使用的对象应手动赋值为null“。

    等等,为什么例子里placeHolder不赋值为null,GC就“发现不了”placeHolder该回收呢?这才是问题的关键所在。

    运行时栈

    典型的运行时栈

    如果你了解过编译原理,或者程序执行的底层机制,你会知道方法在执行的时候,方法里的变量(局部变量)都是分配在栈上的;当然,对于Java来说,new出来的对象是在堆中,但栈中也会有这个对象的指针,和int一样。

    比如对于下面这段代码:

    public static void main(String[] args) {
        int a = 1;
        int b = 2;
        int c = a + b;
    }
    

    其运行时栈的状态可以理解成:
    索引 变量
    | :-: | :-: |
    | 1 | a |
    | 2 | b |
    | 3 | c |
    “索引”表示变量在栈中的序号,根据方法内代码执行的先后顺序,变量被按顺序放在栈中。
    再比如:

    public static void main(String[] args) {
        if (true) {
            int a = 1;
            int b = 2;
            int c = a + b;
        }
        int d = 4;
    }
    

    这时运行时栈就是:
    索引 变量
    | :-: | :-: |
    | 1 | a |
    | 2 | b |
    | 3 | c |
    | 4 | d |

    容易理解吧?其实仔细想想上面这个例子的运行时栈是有优化空间的。

    Java的栈优化

    上面的例子,main()方法运行时占用了4个栈索引空间,但实际上不需要占用这么多。当if执行完后,变量a、b和c都不可能再访问到了,所以它们占用的1~3的栈索引是可以“回收”掉的,比如像这样:

    索引 变量
    | :-: | :-: |
    | 1 | a |
    | 2 | b |
    | 3 | c |
    | 1 | d |

    变量d重用了变量a的栈索引,这样就节约了内存空间。

    提醒

    上面的“运行时栈”和“索引”是为方便引入而故意发明的词,实际上在JVM中,它们的名字分别叫做“局部变量表”和“Slot”。而且局部变量表在编译时即已确定,不需要等到“运行时”。还请注意

    GC一瞥

    这里来简单讲讲主流GC里非常简单的一小块:如何确定对象可以被回收。另一种表达是,如何确定对象是存活的。

    仔细想想,Java的世界中,对象与对象之间是存在关联的,我们可以从一个对象访问到另一个对象。如图所示。
    在这里插入图片描述
    再仔细想想,这些对象与对象之间构成的引用关系,就像是一张大大的图;更清楚一点,是众多的树。

    如果我们找到了所有的树根,那么从树根走下去就能找到所有存活的对象,那么那些没有找到的对象,就是已经死亡的了!这样GC就可以把那些对象回收掉了。

    现在的问题是,怎么找到树根呢?JVM早有规定,其中一个就是:栈中引用的对象。也就是说,只要堆中的这个对象,在栈中还存在引用,就会被认定是存活的。

    提醒

    上面介绍的确定对象可以被回收的算法,其名字是“可达性分析算法”。

    JVM的“bug”

    我们再来回头看看最开始的例子:

    public static void main(String[] args) {
        if (true) {
            byte[] placeHolder = new byte[64 * 1024 * 1024];
            System.out.println(placeHolder.length / 1024);
        }
        System.gc();
    }
    

    看看其运行时栈:

    LocalVariableTable:
    Start  Length  Slot  Name   Signature
        0      21     0  args   [Ljava/lang/String;
        5      12     1 placeHolder   [B
    

    栈中第一个索引是方法传入参数args,其类型为String[];第二个索引是placeHolder,其类型为byte[]。

    联系前面的内容,我们推断placeHolder没有被回收的原因:System.gc();触发GC时,main()方法的运行时栈中,还存在有对args和placeHolder的引用,GC判断这两个对象都是存活的,不进行回收。也就是说,代码在离开if后,虽然已经离开了placeHolder的作用域,但在此之后,没有任何对运行时栈的读写,placeHolder所在的索引还没有被其他变量重用,所以GC判断其为存活。

    为了验证这一推断,我们在System.gc();之前再声明一个变量,按照之前提到的“Java的栈优化”,这个变量会重用placeHolder的索引。

    public static void main(String[] args) {
        if (true) {
            byte[] placeHolder = new byte[64 * 1024 * 1024];
            System.out.println(placeHolder.length / 1024);
        }
        int replacer = 1;
        System.gc();
    }
    

    看看其运行时栈:

    LocalVariableTable:
    Start  Length  Slot  Name   Signature
        0      23     0  args   [Ljava/lang/String;
        5      12     1 placeHolder   [B
       19       4     1 replacer   I
    

    不出所料,replacer重用了placeHolder的索引。来看看GC情况:

    65536
    [GC 68239K->65984K(125952K), 0.0011620 secs]
    [Full GC 65984K->345K(125952K), 0.0095220 secs]
    

    placeHolder被成功回收了!我们的推断也被验证了。

    再从运行时栈来看,加上int replacer = 1;和将placeHolder赋值为null起到了同样的作用:断开堆中placeHolder和栈的联系,让GC判断placeHolder已经死亡。

    现在算是理清了“不使用的对象应手动赋值为null“的原理了,一切根源都是来自于JVM的一个“bug”:代码离开变量作用域时,并不会自动切断其与堆的联系。为什么这个“bug”一直存在?你不觉得出现这种情况的概率太小了么?算是一个tradeoff了。

    总结

    希望看到这里你已经明白了“不使用的对象应手动赋值为null“这句话背后的奥义。我比较赞同《深入理解Java虚拟机》作者的观点:在需要“不使用的对象应手动赋值为null“时大胆去用,但不应当对其有过多依赖,更不能当作是一个普遍规则来推广。

    来源:http://1t.click/aH3R
    在这里插入图片描述
    欢迎关注我的微信公众号「码农突围」,分享Python、Java、大数据、机器学习、人工智能等技术,关注码农技术提升•职场突围•思维跃迁,20万+码农成长充电第一站,陪有梦想的你一起成长

  • 相关阅读:
    Python 30分钟入门——数据类型 and 控制结构
    类球多面体生成——经纬划分法
    GLUT的简洁OO封装
    Resource Acquisition Is Initialization(RAII Idiom)
    为什么operator>>(istream&, string&)能够安全地读入长度未知的字符串?
    斯坦福2014机器学习笔记六----神经网络(一)
    斯坦福2014机器学习笔记五----正则化
    斯坦福2014机器学习笔记四----逻辑回归
    斯坦福2014机器学习笔记三----多变量线性回归与梯度下降法
    斯坦福2014机器学习笔记二----梯度下降法
  • 原文地址:https://www.cnblogs.com/hejunlin/p/13276550.html
Copyright © 2020-2023  润新知