• spark读取hbase形成RDD,存入hive或者spark_sql分析


    object SaprkReadHbase {
        var total:Int = 0
        def main(args: Array[String]) {
          val spark = SparkSession
            .builder()
            .master("local[2]")
            .appName("Spark Read  Hbase ")
            .enableHiveSupport()    //如果要读取hive的表,就必须使用这个
            .getOrCreate()
         val sc= spark.sparkContext
    //zookeeper信息设置,存储着hbase的元信息
          val conf = HBaseConfiguration.create()
          conf.set("hbase.zookeeper.quorum","hadoop01,hadoop02,hadoop03")
          conf.set("hbase.zookeeper.property.clientPort", "2181")
          conf.set(TableInputFormat.INPUT_TABLE, "event_logs_20190218")
    
          //读取数据并转化成rdd
          val hBaseRDD: RDD[(ImmutableBytesWritable, Result)] = sc.newAPIHadoopRDD(conf, classOf[TableInputFormat],
            classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable], //定义输入格式
            classOf[org.apache.hadoop.hbase.client.Result]) //定义输出
          val count = hBaseRDD.count()
          println("
    
    
    :" + count)
          import spark.implicits._
        val logRDD: RDD[EventLog] = hBaseRDD.map{case (_,result) =>{
            //获取行键v
            val rowKey = Bytes.toString(result.getRow)
           val api_v=Bytes.toString(result.getValue(Bytes.toBytes("info"),Bytes.toBytes("api_v")))
            val app_id=Bytes.toString(result.getValue(Bytes.toBytes("info"),Bytes.toBytes("app_id")))
            val c_time=Bytes.toString(result.getValue(Bytes.toBytes("info"),Bytes.toBytes("c_time")))
            val ch_id=Bytes.toString(result.getValue(Bytes.toBytes("info"),Bytes.toBytes("ch_id")))
            val city=Bytes.toString(result.getValue(Bytes.toBytes("info"),Bytes.toBytes("city")))
            val province=Bytes.toString(result.getValue(Bytes.toBytes("info"),Bytes.toBytes("province")))
            val country=Bytes.toString(result.getValue(Bytes.toBytes("info"),Bytes.toBytes("country")))
            val en=Bytes.toString(result.getValue(Bytes.toBytes("info"),Bytes.toBytes("en")))
            val ip=Bytes.toString(result.getValue(Bytes.toBytes("info"),Bytes.toBytes("ip")))
            val net_t=Bytes.toString(result.getValue(Bytes.toBytes("info"),Bytes.toBytes("net_t")))
            val pl=Bytes.toString(result.getValue(Bytes.toBytes("info"),Bytes.toBytes("pl")))
            val s_time=Bytes.toString(result.getValue(Bytes.toBytes("info"),Bytes.toBytes("s_time")))
            val user_id=Bytes.toString(result.getValue(Bytes.toBytes("info"),Bytes.toBytes("user_id")))
            val uuid=Bytes.toString(result.getValue(Bytes.toBytes("info"),Bytes.toBytes("uuid")))
            val ver=Bytes.toString(result.getValue(Bytes.toBytes("info"),Bytes.toBytes("ver")))
    //样例类进行schemal信息构建。元组与样例类的字段值据说不能超过22个,一般structureType构建(row,schemal) new EventLog(rowKey,api_v,app_id,c_time,ch_id,city,province,country,en,ip,net_t,pl,s_time,user_id,uuid,ver) } }
    //可以转为dataframe、dataset存入hive作为宽表 或者直接进行sparkcore分析 val logds= logRDD.toDS() logds.createTempView("event_logs") val sq= spark.sql("select * from event_logs limit 1") println(sq.explain()) sq.show() sc.stop() spark.stop() } }


    //write hbase
    /**
    * @created by imp ON 2018/2/19
    */
    class SparkWriteHbase {
    def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf().setAppName(this.getClass.getName).setMaster("local")
    val sc = new SparkContext(sparkConf)
    sc.setLogLevel("ERROR")
    val conf = HBaseConfiguration.create()
    conf.set("hbase.zookeeper.quorum", "hadoop01,hadoop02,hadoop03")
    conf.set("hbase.zookeeper.property.clientPort", "2181")
    conf.set(TableOutputFormat.OUTPUT_TABLE, "test")
    val job = new Job(conf)
    job.setOutputKeyClass(classOf[ImmutableBytesWritable])
    job.setOutputValueClass(classOf[Result])
    job.setOutputFormatClass(classOf[TableOutputFormat[ImmutableBytesWritable]])

    var arrResult: Array[String] = new Array[String](1)
    arrResult(0) = "1, 3000000000";
    //arrResult(0) = "1,100,11"

    val resultRDD = sc.makeRDD(arrResult)
    val saveRDD = resultRDD.map(_.split(',')).map { arr => {
    val put = new Put(Bytes.toBytes(arr(0)))
    put.add(Bytes.toBytes("info"), Bytes.toBytes("total"), Bytes.toBytes(arr(1)))
    (new ImmutableBytesWritable, put)
    }
    }
    println("getConfiguration")
    var c = job.getConfiguration()
    println("save")
    saveRDD.saveAsNewAPIHadoopDataset(c)

    sc.stop()
    // spark.stop()
    }

    }
     
  • 相关阅读:
    JAVA对象之生
    单表扫描,MySQL索引选择不正确 并 详细解析OPTIMIZER_TRACE格式
    [MySQL 5.6] 初识5.6的optimizer trace
    [MySQL5.6] 一个简单的optimizer_trace示例
    PERFORMANCE_SCHEMA 详解
    MetaData Lock 杨奇龙 ---MYSQL博客专家
    ArcEngine控制台应用程序
    一位数据科学家的私房工具清单
    数据可视化之热力图
    数据可视化之MarkPoint
  • 原文地址:https://www.cnblogs.com/hejunhong/p/10403572.html
Copyright © 2020-2023  润新知