考虑每个人(t)的所有子女,在全排列中,t可以和他的任意子女交换位置构成新的排列,所以全排列n!/所有人的子女数连乘 即是答案 当然由于有MOD 要求逆。
#include <cstdio> #include <cstring> #include <vector> using namespace std; typedef long long ll; const int N = 40005; const ll MOD = 1e9+7; int n, m; ll v[N]; vector<int> g[N]; void init () { scanf("%d%d", &n, &m); memset(v, 0, sizeof(v)); for (int i = 0; i <= n; i++) g[i].clear(); int a, b; for (int i = 0; i < m; i++) { scanf("%d%d", &a, &b); g[b].push_back(a); } } ll dfs(int x) { if (v[x]) return v[x]; for (int i = 0; i < g[x].size(); i++) v[x] += dfs(g[x][i]); return ++v[x]; } void gcd (ll a, ll b, ll& x, ll& y, ll& d) { if (b == 0) { d = a; x = 1; y = 0; } else { gcd(b, a%b, y, x, d); y -= x*(a/b); } } int main () { int cas; scanf("%d", &cas); while (cas--) { init (); ll ans = 1, b = 1; for (ll i = 1; i <= n; i++) ans = (ans * i) % MOD; for (int i = 1; i <= n; i++) b = (b * dfs(i)) % MOD; ll p, k, d = 1; gcd(b, MOD, p, k, d); ans = ((ans * p) % MOD + MOD) % MOD; printf("%lld ", ans); } return 0; }