• [整合]中缀表达式、前缀表达式、后缀表达式的相互转换


    --------------------------------后缀转中缀----------------------------------------------

    1、建立一个栈,从左向右扫描后缀表达式,遇到运算数则压入栈;

    2、遇到运算符就把栈顶两个元素出栈,执行运算,得到的结果作为新的运算符再压入栈;

    3、依次走到表达式结尾;

    例:把逆波兰式(即后缀表达式)ab+c*转换为中缀表达式:

      1)a入栈(0位置)
      2)b入栈(1位置)
      3)遇到运算符"+",将a和b出栈,执行a+b的操作,得到结果d=a+b,再将d入栈(0位置)
      4)c入栈(1位置)
      5)遇到运算符"*",将d和c出栈,执行d*c的操作,得到结果e,再将e入栈(0位置)

    得到结果(a+b)*c;

    -----------------------将中缀表达式转换为前缀表达式----------------------------------

    (1) 初始化两个栈:运算符栈S1和储存中间结果的栈S2;
    (2) 从右至左扫描中缀表达式;
    (3) 遇到操作数时,将其压入S2;
    (4) 遇到运算符时,比较其与S1栈顶运算符的优先级:
    (4-1) 如果S1为空,或栈顶运算符为右括号“)”,则直接将此运算符入栈;
    (4-2) 否则,若优先级比栈顶运算符的较高或相等,也将运算符压入S1;
    (4-3) 否则,将S1栈顶的运算符弹出并压入到S2中,再次转到(4-1)与S1中新的栈顶运算符相比较;
    (5) 遇到括号时:
    (5-1) 如果是右括号“)”,则直接压入S1;
    (5-2) 如果是左括号“(”,则依次弹出S1栈顶的运算符,并压入S2,直到遇到右括号为止,此时将这一对括号丢弃;
    (6) 重复步骤(2)至(5),直到表达式的最左边;
    (7) 将S1中剩余的运算符依次弹出并压入S2;
    (8) 依次弹出S2中的元素并输出,结果即为中缀表达式对应的前缀表达式。
    例如,将中缀表达式“1+((2+3)×4)-5”转换为前缀表达式的过程如下:

    扫描到的元素 S2(栈底->栈顶) S1 (栈底->栈顶) 说明
    5 5 数字,直接入栈
    - 5 - S1为空,运算符直接入栈
    ) 5 - ) 右括号直接入栈
    4 5 4 - ) 数字直接入栈
    × 5 4 - ) × S1栈顶是右括号,直接入栈
    ) 5 4 - ) × ) 右括号直接入栈
    3 5 4 3 - ) × ) 数字
    + 5 4 3 - ) × ) + S1栈顶是右括号,直接入栈
    2 5 4 3 2 - ) × ) + 数字
    ( 5 4 3 2 + - ) × 左括号,弹出运算符直至遇到右括号
    ( 5 4 3 2 + × - 同上
    + 5 4 3 2 + × - + 优先级与-相同,入栈
    1 5 4 3 2 + × 1 - + 数字
    到达最左端 5 4 3 2 + × 1 + - S1中剩余的运算符

    因此结果为“- + 1 × + 2 3 4 5”。

    -----------------------------中缀表达式转为后缀表达式--------------------------------------

    与转换为前缀表达式相似,遵循以下步骤:
    (1) 初始化两个栈:运算符栈S1和储存中间结果的栈S2;
    (2) 从左至右扫描中缀表达式;
    (3) 遇到操作数时,将其压入S2;
    (4) 遇到运算符时,比较其与S1栈顶运算符的优先级:
    (4-1) 如果S1为空,或栈顶运算符为左括号“(”,则直接将此运算符入栈;
    (4-2) 否则,若优先级比栈顶运算符的高,也将运算符压入S1(注意转换为前缀表达式时是优先级较高或相同,而这里则不包括相同的情况);
    (4-3) 否则,将S1栈顶的运算符弹出并压入到S2中,再次转到(4-1)与S1中新的栈顶运算符相比较;
    (5) 遇到括号时:
    (5-1) 如果是左括号“(”,则直接压入S1;
    (5-2) 如果是右括号“)”,则依次弹出S1栈顶的运算符,并压入S2,直到遇到左括号为止,此时将这一对括号丢弃;
    (6) 重复步骤(2)至(5),直到表达式的最右边;
    (7) 将S1中剩余的运算符依次弹出并压入S2;
    (8) 依次弹出S2中的元素并输出,结果的逆序即为中缀表达式对应的后缀表达式(转换为前缀表达式时不用逆序)。

    例如,将中缀表达式“1+((2+3)×4)-5”转换为后缀表达式的过程如下:

    扫描到的元素 S2(栈底->栈顶) S1 (栈底->栈顶) 说明
    1 1 数字,直接入栈
    + 1 + S1为空,运算符直接入栈
    ( 1 + ( 左括号,直接入栈
    ( 1 + ( ( 同上
    2 1 2 + ( ( 数字
    + 1 2 + ( ( + S1栈顶为左括号,运算符直接入栈
    3 1 2 3 + ( ( + 数字
    ) 1 2 3 + + ( 右括号,弹出运算符直至遇到左括号
    × 1 2 3 + + ( × S1栈顶为左括号,运算符直接入栈
    4 1 2 3 + 4 + ( × 数字
    ) 1 2 3 + 4 × + 右括号,弹出运算符直至遇到左括号
    - 1 2 3 + 4 × + - -与+优先级相同,因此弹出+,再压入-
    5 1 2 3 + 4 × + 5 - 数字
    到达最右端 1 2 3 + 4 × + 5 - S1中剩余的运算符


    因此结果为“1 2 3 + 4 × + 5 -”(注意需要逆序输出)。

  • 相关阅读:
    Linux下的crontab定时执行任务命令详解
    TP5使用Composer安装PhpSpreadsheet类库实现导入导出
    在本地创建分支并发布到远程仓库
    Linux中文件的可读,可写,可执行权限的解读以及chmod,chown,chgrp命令的用法
    crontab 定时写法整理
    Linux && Windows下基于ThinkPHP5框架实现定时任务(TP5定时任务)-结合Crontab任务
    Echarts环形图、折线图通过ajax动态获取数据
    javascript另类方法高效实现htmlencode()与htmldecode()函数,附带PHP请求完整操作
    PHP获取本月开始、结束时间,近七天所有时间
    关于sql中case when用法
  • 原文地址:https://www.cnblogs.com/heimianshusheng/p/4820230.html
Copyright © 2020-2023  润新知