• Opencv YAML和XML格式文件操作详解



    本系列文章由 @YhL_Leo 出品,转载请注明出处。
    文章链接: http://blog.csdn.net/yhl_leo/article/details/47660943


    本文参考Opencv 2.4.11 documentation整理对YAMLXML文件实现I/O操作的方法。

    官网:YAML:http://www.yaml.org XML :http://www.w3c.org/XML

    1.YAML与XML文件的打开和关闭

    YAML格式的文件拓展名包括:.yml.yaml,两个都表示YAML文件;
    XML格式的文件拓展名为: .xml

    1.1 文件打开

    在Opencv中,使用FileStorage进行文件读写。XML文件操作与YAML一样,不过存在一些细小差别。

    std::string fileName  = "E:\test.yml"; // YAML
    std::string fileName2 = "E:\test.xml"; // XML
    // write file
    cv::FileStorage fs(fileName , cv::FileStorage::WRITE);
    // read file
    cv::FileStorage fs2(fileName , cv::FileStorage::READ);
    // or use: cv::FileStorage::open
    fs2.open(fileName , cv::FileStorage::READ);

    FileStorage的文件操作模式一共分为四种:READWRITEAPPENDMEMORY

    文档打开后很关心的一件事就是,进行确认是否成功。FileStorage有自己的成员函数返回文件打开状态:

    // bool FileStorage::isOpened() const;
    if ( !fs.isOpened() ) // failed
    {
        std::cout<<"Save File Failed!"<<std::endl;
        return ;
    }
    else // succeed
    {
        ...
    }

    1.2 文件关闭

    FileStorage文件关闭比较简单:

    fs.release();

    2.文件读写

    FileStorage文件读与写的方法与C++语言中的文件流对象的使用很像,对>><<进行了重载,分别用于文件读取和写入。很棒的是,FileStorage支持一些常用格式的直接读写,例如字符、字符串、数字、cv::Mat等。对于不支持的数据结构,只能按照规则自己去写啦~

    2.1 写入

    fs << "frameCount" << 5;  // 字符和数字
    cv::Mat_<double> cameraMat = cv::Mat_<double>::zeros(3, 3); 
    fs << "Camera Intrinsic Matrix" << cameraMat; // cv::Mat

    注意:

    • fs << "frameCount" <<5""内输出的字符串是有限制的,对于YAML有效范围是:[a-z],[A-Z],[0-9],”-“,”_”和空格。XML与YAML基本一致,但是YAML字符之间加空格是允许的,XML不允许。如果出现以下BUG,请不要慌张,检查一下输入的字符是否有效就OK~

    2.2 读取

    文件读取的方法有两种:

    // first method: use (type) operator on FileNode.
    int frameCount = (int)fs2["frameCount"];
    // second second method: use cv::FileNode::operator >>
    int frameCount;
    fs2["frameCount"] >> frameCount;

    2.3 Mat的操作

    这一点真的很不错,而且与C++的输入输出方法很接近(链接:常用的三种Mat类型):

    cv::Mat_<double> cameraMat = cv::Mat_<double>::zeros(3, 3);
    cv::Mat_<double> distCoeffes = ( cv::Mat_<double>(5, 1)<< 0.1, 0.01, -0.001, 0.0, 0.0 );
    // C++
    std::cout<<"Camera Matrix"<<std::endl<<cv::Mat::Mat(cameraMat)<<std::endl;
    std::cout<<"Distortion Coefficients"<<std::endl<<cv::Mat::Mat(distCoeffes)<<std::endl;
    // cv::FileStorage
    fs << "Camera Matrix" << cameraMat;
    fs << "Distortion Coefficients"<<distCoeffes;

    运行结果对比如下:

    C++ C++
    YAML YAML
    XML YAML

    2.4 集合的操作

    Opencv中将集合分为两类:映射和序列。

    映射集合(Mappings, 又称named collections):每个元素有一个名字或者说关键字,并且可以通过名字访问其数据,类似于Key-Value结构。使用方法为:

    // Mappings write
    int x(1.0), y(0.0);
    fs << "features" << "["; // also can be "[:"
    fs <<"{:" << "x" << x << "y" << "}" << "]";
    • "{""{:"输出的结果是不一样的,YAML使用":"后,使输出的文本具有Python的风格,映射集合会按照一行排列,不适用时,按照每个元素与其值单独一行的方法排列。XML使用":"后输出结果会有不同,但基本可以视为把":"忽略。

    YAML { Map1
    YAML {: Map2
    XML { Map3
    XML {: Map4

    // Mappings read
    cv::FileNode features = fs2["features"];
    // 遍历查看
    cv::FileNodeIterator it = features.begin();
    std::cout<<
        "x="<<(int)(*it)["x"]<<
        " y="<<(int)(*it)["y"]<<
        " z="<<(int)(*it)["z"]<<std::endl;

    输出结果:Output

    • 编程的时候,不在Mapping的"{ }"外加上"[ ]"输出的效果是不一样的,而且在数据读取的时候,加上"[
      ]"
      的Mapping结构会被认为是Mapping结构,否则会出错,以上述的Mappings write代码为例: 对于 fs <<
      "fearures" << "[" << "{" << ... << "}" << "]"
      结构,用上述方法可以读取成功; 对于 fs
      << "features" << "{" << ... << "}"
      结构,用上述方法时就会出错:

    序列集合(Sequences,又称unnamed collections):数据没有名字名字或者关键字,一般通过序号(indices)访问数据,例如最常见的数组。

    与映射类似,序列集合需要在输出开始前加"[",结束后使用"]",并且"[:""["在输出风格上与映射集合类似。

    // Sequences write
    int mySeq[5] = {0, 1, 2, 3, 4};
    fs << "mySeq" << "[";
    for ( int idx=0; idx<5; idx++ )
    {
        fs << mySeq[idx];
    }
    fs << "]";
    // Sequences read
    cv::FileNode mySeq2 = fs2["mySeq"];
    std::vector<int> seq;
    cv::FileNodeIterator it = mySeq2.begin(), it_end = mySeq2.end();
    for ( ; it != it_end; it++  )
    {
        seq.push_back( (int)( *it ) );
        // std::cout<<(int)(*it)<<" "<<std::endl;
    }

    3.Opencv documentation 源码示例

    下面贴出Opencv documentation中的示例代码,可以作为参考:

    // file write
    #include "opencv2/opencv.hpp"
    #include <time.h>
    
    using namespace cv;
    using namespace std;
    
    int main(int, char** argv)
    {
        FileStorage fs("test.yml", FileStorage::WRITE);
    
        fs << "frameCount" << 5;
        time_t rawtime; time(&rawtime);
        fs << "calibrationDate" << asctime(localtime(&rawtime));
        Mat cameraMatrix = (Mat_<double>(3,3) << 1000, 0, 320, 0, 1000, 240, 0, 0, 1);
        Mat distCoeffs = (Mat_<double>(5,1) << 0.1, 0.01, -0.001, 0, 0);
        fs << "cameraMatrix" << cameraMatrix << "distCoeffs" << distCoeffs;
        fs << "features" << "[";
        for( int i = 0; i < 3; i++ )
        {
            int x = rand() % 640;
            int y = rand() % 480;
            uchar lbp = rand() % 256;
    
            fs << "{:" << "x" << x << "y" << y << "lbp" << "[:";
            for( int j = 0; j < 8; j++ )
                fs << ((lbp >> j) & 1);
            fs << "]" << "}";
        }
        fs << "]";
        fs.release();
        return 0;
    }
    // results
    %YAML:1.0
    frameCount: 5
    calibrationDate: "Fri Jun 17 14:09:29 2011
    "
    cameraMatrix: !!opencv-matrix
       rows: 3
       cols: 3
       dt: d
       data: [ 1000., 0., 320., 0., 1000., 240., 0., 0., 1. ]
    distCoeffs: !!opencv-matrix
       rows: 5
       cols: 1
       dt: d
       data: [ 1.0000000000000001e-01, 1.0000000000000000e-02,
           -1.0000000000000000e-03, 0., 0. ]
    features:
       - { x:167, y:49, lbp:[ 1, 0, 0, 1, 1, 0, 1, 1 ] }
       - { x:298, y:130, lbp:[ 0, 0, 0, 1, 0, 0, 1, 1 ] }
       - { x:344, y:158, lbp:[ 1, 1, 0, 0, 0, 0, 1, 0 ] }
    // file read
    FileStorage fs2("test.yml", FileStorage::READ);
    
    // first method: use (type) operator on FileNode.
    int frameCount = (int)fs2["frameCount"];
    
    std::string date;
    // second method: use FileNode::operator >>
    fs2["calibrationDate"] >> date;
    
    Mat cameraMatrix2, distCoeffs2;
    fs2["cameraMatrix"] >> cameraMatrix2;
    fs2["distCoeffs"] >> distCoeffs2;
    
    cout << "frameCount: " << frameCount << endl
         << "calibration date: " << date << endl
         << "camera matrix: " << cameraMatrix2 << endl
         << "distortion coeffs: " << distCoeffs2 << endl;
    
    FileNode features = fs2["features"];
    FileNodeIterator it = features.begin(), it_end = features.end();
    int idx = 0;
    std::vector<uchar> lbpval;
    
    // iterate through a sequence using FileNodeIterator
    for( ; it != it_end; ++it, idx++ )
    {
        cout << "feature #" << idx << ": ";
        cout << "x=" << (int)(*it)["x"] << ", y=" << (int)(*it)["y"] << ", lbp: (";
        // you can also easily read numerical arrays using FileNode >> std::vector operator.
        (*it)["lbp"] >> lbpval;
        for( int i = 0; i < (int)lbpval.size(); i++ )
            cout << " " << (int)lbpval[i];
        cout << ")" << endl;
    }
    fs.release();
  • 相关阅读:
    Spring/Spring-Boot 学习 连接redis数据库
    Spring/Spring-Boot 学习 答疑
    Spring/Spring-Boot 学习 paoding-rose-jade 连接MySQL数据库
    Spring/Spring-Boot 学习 Bean注入的方式
    Spring/Spring-Boot 学习 @Autowired 与 @Resource
    博客园主题与代码高亮
    从不懂spring的开始的学习之旅
    nginx 缓存服务器配置
    jenkins + sonar代码质量自动化分析平台
    Linux下如何查看哪些进程占用的CPU内存资源最多
  • 原文地址:https://www.cnblogs.com/hehehaha/p/6332247.html
Copyright © 2020-2023  润新知