• Opencv 三次样条曲线(Cubic Spline)插值



    本系列文章由 @YhL_Leo 出品,转载请注明出处。
    文章链接: http://blog.csdn.net/yhl_leo/article/details/47707679


    1.样条曲线简介

    样条曲线(Spline)本质是分段多项式实函数,在实数范围内有:S:[a,b]R,在区间[a,b]上包含k个子区间[ti1,ti],且有:

    a=t0<t1<<tk1<tk=b(1)

    对应每一段区间i的存在多项式: Pi:[ti1,ti]R,且满足于:

    S(t)=P1(t) , t0t<t1,S(t)=P2(t) , t1t<t2,S(t)=Pk(t) , tk1ttk.(2)

    其中,Pi(t)多项式中最高次项的幂,视为样条的阶数或次数(Order of spline),根据子区间[ti1,ti]的区间长度是否一致分为均匀(Uniform)样条和非均匀(Non-uniform)样条。

    满足了公式(2)的多项式有很多,为了保证曲线在S区间内具有据够的平滑度,一条n次样条,同时应具备处处连续且可微的性质:

    P(j)i(ti)=P(j)i+1(ti);(3)

    其中 i=1,,k1;j=0,,n1

    2.三次样条曲线

    2.1曲线条件

    按照上述的定义,给定节点:

    t:z:a=t0z0<t1z1<<tk1zk1<tkzk=b(4)

    三次样条曲线满足三个条件:

    1. 在每段分段区间[ti,ti+1],i=0,1,,k1上,S(t)=Si(t)都是一个三次多项式;
    2. 满足S(ti)=zi,i=1,,k1;
    3. S(t)的一阶导函数S(t)和二阶导函数S′′(t)在区间[a,b]上都是连续的,从而曲线具有光滑性。

    则三次样条的方程可以写为:

    Si(t)=ai+bi(tti)+ci(tti)2+di(tti)3,(5)

    其中,ai,bi,ci,di分别代表n个未知系数。

    • 曲线的连续性表示为:

    Si(ti)=zi,(6)

    Si(ti+1)=zi+1,(7)

    其中i=0,1,,k1

    • 曲线微分连续性:

    Si(ti+1)=Si+1(ti+1),(8)

    S′′i(ti+1)=S′′i+1(ti+1),(9)

    其中i=0,1,,k2

    • 曲线的导函数表达式:

    Si=bi+2ci(tti)+3di(tti)2,(10)

    S′′i(x)=2ci+6di(tti),(11)

    令区间长度hi=ti+1ti,则有:

    1. 由公式(6),可得:ai=zi

    2. 由公式(7),可得:ai+bihi+cih2i+dih3i=zi+1

    3. 由公式(8),可得:
      Si(ti+1)=bi+2cihi+3dih2i;
      Si+1(ti+1)=bi+1
      bi+2cihi+3dih2ibi+1=0

    4. 由公式(9),可得:
      S′′i(ti+1)=2ci+6dihi
      S′′i+1(ti+1)=2ci+1
      2ci+6dihi=2ci+1

      mi=S′′i(xi)=2ci,则:

      A.mi+6dihimi+1=0
      di=mi+1mi6hi

      B.ci,di代入zi+bihi+cih2i+dih3i=zi+1
      bi=zi+1zihihi2mihi6(mi+1mi)

      C.bi,ci,di代入bi+2cihi+3dih2i=bi+1

      himi+2(hi+hi+1)mi+1+hi+1mi+2=6[zi+2zi+1hi+1zi+1zihi].(12)

    2.2端点条件

    在上述分析中,曲线段的两个端点t0tk是不适用的,有一些常用的端点限制条件,这里只讲解自然边界。
    在自然边界下,首尾两端的二阶导函数满足S′′=0,即m0=0mk=0,求解方程组可写为:

    1h00002(h0+h1)h20h12(h1+h2)00h2hk2002(hk2+hk1)00hk11m0m1m2mk1mk=60z2z1h1z1z0h0z3z2h2z2z1h1zkzk1hk1zk1zk2hk20(13)

    其系数矩阵为三对角线矩阵,在该篇博客内会有其讲解。

    3.Code

    // CubicSplineInterpolation.h
    
    /*
       Cubic spline interpolation class.
    
       - Editor: Yahui Liu.
       - Data:   2015-08-16
       - Email:  yahui.cvrs@gmail.com
       - Address: Computer Vision and Remote Sensing(CVRS), Lab.
    */
    
    #ifndef CUBIC_SPLINE_INTERPOLATION_H
    #pragma once
    #define CUBIC_SPLINE_INTERPOLATION_H
    
    #include <iostream>
    #include <vector>
    #include <math.h>
    
    #include <cv.h>
    #include <highgui.h>
    
    using namespace std;
    using namespace cv;
    
    /* Cubic spline interpolation coefficients */
    class CubicSplineCoeffs
    {
    public:
        CubicSplineCoeffs( const int &count ) 
        {
            a = std::vector<double>(count);
            b = std::vector<double>(count);
            c = std::vector<double>(count);
            d = std::vector<double>(count);
        }
        ~CubicSplineCoeffs() 
        {
            std::vector<double>().swap(a);
            std::vector<double>().swap(b);
            std::vector<double>().swap(c);
            std::vector<double>().swap(d);
        }
    
    public:
        std::vector<double> a, b, c, d;
    };
    
    enum CubicSplineMode
    {
        CUBIC_NATURAL,    // Natural
        CUBIC_CLAMPED,    // TODO: Clamped 
        CUBIC_NOT_A_KNOT  // TODO: Not a knot 
    };
    
    enum SplineFilterMode
    {
        CUBIC_WITHOUT_FILTER, // without filter
        CUBIC_MEDIAN_FILTER  // median filter
    };
    
    /* Cubic spline interpolation */
    class CubicSplineInterpolation
    {
    public:
        CubicSplineInterpolation() {}
        ~CubicSplineInterpolation() {}
    
    public:
    
        /* 
            Calculate cubic spline coefficients.
              - node list x (input_x);
              - node list y (input_y);
              - output coefficients (cubicCoeffs);
              - ends mode (splineMode).
        */
        void calCubicSplineCoeffs( std::vector<double> &input_x, 
            std::vector<double> &input_y, CubicSplineCoeffs *&cubicCoeffs,
            CubicSplineMode splineMode = CUBIC_NATURAL,
            SplineFilterMode filterMode = CUBIC_MEDIAN_FILTER );
    
        /*
            Cubic spline interpolation for a list.
              - input coefficients (cubicCoeffs);
              - input node list x (input_x);
              - output node list x (output_x);
              - output node list y (output_y);
              - interpolation step (interStep).
        */
        void cubicSplineInterpolation( CubicSplineCoeffs *&cubicCoeffs,
            std::vector<double> &input_x, std::vector<double> &output_x,
            std::vector<double> &output_y, const double interStep = 0.5 );
    
        /* 
            Cubic spline interpolation for a value.
              - input coefficients (cubicCoeffs);
              - input a value(x);
              - output interpolation value(y);
        */
        void cubicSplineInterpolation2( CubicSplineCoeffs *&cubicCoeffs,
            std::vector<double> &input_x, double &x, double &y );
    
        /* 
            calculate  tridiagonal matrices with Thomas Algorithm(TDMA) :
    
            example:
            | b1 c1 0  0  0  0  |  |x1 |   |d1 |
            | a2 b2 c2 0  0  0  |  |x2 |   |d2 |
            | 0  a3 b3 c3 0  0  |  |x3 | = |d3 |
            | ...         ...   |  |...|   |...|
            | 0  0  0  0  an bn |  |xn |   |dn |
    
            Ci = ci/bi , i=1; ci / (bi - Ci-1 * ai) , i = 2, 3, ... n-1;
            Di = di/bi , i=1; ( di - Di-1 * ai )/(bi - Ci-1 * ai) , i = 2, 3, ..., n-1
    
            xi = Di - Ci*xi+1 , i = n-1, n-2, 1;
        */
        bool caltridiagonalMatrices( cv::Mat_<double> &input_a, 
            cv::Mat_<double> &input_b, cv::Mat_<double> &input_c,
            cv::Mat_<double> &input_d, cv::Mat_<double> &output_x );
    
        /* Calculate the curve index interpolation belongs to */
        int calInterpolationIndex( double &pt, std::vector<double> &input_x );
    
        /* median filtering */
        void cubicMedianFilter( std::vector<double> &input, const int filterSize = 5 );
    
        double cubicSort( std::vector<double> &input );
        // double cubicNearestValue( std::vector );
    };
    
    #endif // CUBIC_SPLINE_INTERPOLATION_H
    // CubicSplineInterpolation.cpp
    
    #include "CubicSplineInterpolation.h"
    
    void CubicSplineInterpolation::calCubicSplineCoeffs( 
        std::vector<double> &input_x, 
        std::vector<double> &input_y, 
        CubicSplineCoeffs *&cubicCoeffs,
        CubicSplineMode splineMode /* = CUBIC_NATURAL */,
        SplineFilterMode filterMode /*= CUBIC_MEDIAN_FILTER*/ )
    {
        int sizeOfx = input_x.size();
        int sizeOfy = input_y.size();
    
        if ( sizeOfx != sizeOfy )
        {
            std::cout << "Data input error!" << std::endl <<
                "Location: CubicSplineInterpolation.cpp" <<
                " -> calCubicSplineCoeffs()" << std::endl;
    
            return;
        }
    
        /*
            hi*mi + 2*(hi + hi+1)*mi+1 + hi+1*mi+2
            =  6{ (yi+2 - yi+1)/hi+1 - (yi+1 - yi)/hi }
    
            so, ignore the both ends:
            | -     -     -        0           ...             0     |  |m0 |
            | h0 2(h0+h1) h1       0           ...             0     |  |m1 |
            | 0     h1    2(h1+h2) h2 0        ...                   |  |m2 |
            |         ...                      ...             0     |  |...|
            | 0       ...           0 h(n-2) 2(h(n-2)+h(n-1)) h(n-1) |  |   |
            | 0       ...                      ...             -     |  |mn |
    
        */
    
        std::vector<double> copy_y = input_y;
    
        if ( filterMode == CUBIC_MEDIAN_FILTER )
        {
            cubicMedianFilter(copy_y, 5);
        }
    
        const int count  = sizeOfx;
        const int count1 = sizeOfx - 1;
        const int count2 = sizeOfx - 2;
        const int count3 = sizeOfx - 3;
    
        cubicCoeffs = new CubicSplineCoeffs( count1 );
    
        std::vector<double> step_h( count1, 0.0 );
    
        // for m matrix
        cv::Mat_<double> m_a(1, count2, 0.0);
        cv::Mat_<double> m_b(1, count2, 0.0);
        cv::Mat_<double> m_c(1, count2, 0.0);
        cv::Mat_<double> m_d(1, count2, 0.0);
        cv::Mat_<double> m_part(1, count2, 0.0);
    
        cv::Mat_<double> m_all(1, count, 0.0);
    
        // initial step hi
        for ( int idx=0; idx < count1; idx ++ )
        {
            step_h[idx] = input_x[idx+1] - input_x[idx];
        }
        // initial coefficients
        for ( int idx=0; idx < count3; idx ++ )
        {
            m_a(idx) = step_h[idx];
            m_b(idx) = 2 * (step_h[idx] + step_h[idx+1]);
            m_c(idx) = step_h[idx+1];
        }
        // initial d
        for ( int idx =0; idx < count3; idx ++ )
        {
            m_d(idx) = 6 * ( 
                (copy_y[idx+2] - copy_y[idx+1]) / step_h[idx+1] -  
                (copy_y[idx+1] - copy_y[idx]) / step_h[idx] );
        }
    
         //cv::Mat_<double> matOfm( count2,  )
        bool isSucceed = caltridiagonalMatrices(m_a, m_b, m_c, m_d, m_part);
        if ( !isSucceed )
        {
            std::cout<<"Calculate tridiagonal matrices failed!"<<std::endl<<
                "Location: CubicSplineInterpolation.cpp -> " <<
                "caltridiagonalMatrices()"<<std::endl;
    
            return;
        }
    
        if ( splineMode == CUBIC_NATURAL )
        {
            m_all(0)      = 0.0;
            m_all(count1) = 0.0;
    
            for ( int i=1; i<count1; i++ )
            {
                m_all(i) = m_part(i-1);
            }
    
            for ( int i=0; i<count1; i++ )
            {
                cubicCoeffs->a[i] = copy_y[i];
                cubicCoeffs->b[i] = ( copy_y[i+1] - copy_y[i] ) / step_h[i] -
                    step_h[i]*( 2*m_all(i) + m_all(i+1) ) / 6;
                cubicCoeffs->c[i] = m_all(i) / 2.0;
                cubicCoeffs->d[i] = ( m_all(i+1) - m_all(i) ) / ( 6.0 * step_h[i] );
            }
        }
        else
        {
            std::cout<<"Not define the interpolation mode!"<<std::endl;
        }
    }
    
    void CubicSplineInterpolation::cubicSplineInterpolation( 
        CubicSplineCoeffs *&cubicCoeffs,
        std::vector<double> &input_x,
        std::vector<double> &output_x,
        std::vector<double> &output_y, 
        const double interStep )
    {
        const int count = input_x.size();
    
        double low  = input_x[0];
        double high = input_x[count-1];
    
        double interBegin = low;
        for ( ; interBegin < high; interBegin += interStep )
        {
            int index = calInterpolationIndex(interBegin, input_x);
            if ( index >= 0 )
            {
                double dertx = interBegin - input_x[index];
                double y = cubicCoeffs->a[index] + cubicCoeffs->b[index] * dertx +
                    cubicCoeffs->c[index] * dertx * dertx + 
                    cubicCoeffs->d[index] * dertx * dertx * dertx;
                output_x.push_back(interBegin);
                output_y.push_back(y);
            }
        }
    }
    
    void CubicSplineInterpolation::cubicSplineInterpolation2( 
        CubicSplineCoeffs *&cubicCoeffs,
        std::vector<double> &input_x, double &x, double &y)
    {
        const int count = input_x.size();
    
        double low  = input_x[0];
        double high = input_x[count-1];
    
        if ( x<low || x>high )
        {
            std::cout<<"The interpolation value is out of range!"<<std::endl;
        }
        else
        {
            int index = calInterpolationIndex(x, input_x);
            if ( index > 0 )
            {
                double dertx = x - input_x[index];
                y = cubicCoeffs->a[index] + cubicCoeffs->b[index] * dertx +
                    cubicCoeffs->c[index] * dertx * dertx + 
                    cubicCoeffs->d[index] * dertx * dertx * dertx;
            }
            else
            {
                std::cout<<"Can't find the interpolation range!"<<std::endl;
            }
        }
    }
    
    bool CubicSplineInterpolation::caltridiagonalMatrices( 
        cv::Mat_<double> &input_a, 
        cv::Mat_<double> &input_b, 
        cv::Mat_<double> &input_c,
        cv::Mat_<double> &input_d,
        cv::Mat_<double> &output_x )
    {
        int rows = input_a.rows;
        int cols = input_a.cols;
    
        if ( ( rows == 1 && cols > rows ) || 
            (cols == 1 && rows > cols ) )
        {
            const int count = ( rows > cols ? rows : cols ) - 1;
    
            output_x = cv::Mat_<double>::zeros(rows, cols);
    
            cv::Mat_<double> cCopy, dCopy;
            input_c.copyTo(cCopy);
            input_d.copyTo(dCopy);
    
            if ( input_b(0) != 0 )
            {
                cCopy(0) /= input_b(0);
                dCopy(0) /= input_b(0);
            }
            else
            {
                return false;
            }
    
            for ( int i=1; i < count; i++ )
            {
                double temp = input_b(i) - input_a(i) * cCopy(i-1);
                if ( temp == 0.0 )
                {
                    return false;
                }
    
                cCopy(i) /= temp;
                dCopy(i) = ( dCopy(i) - dCopy(i-1)*input_a(i) ) / temp;
            }
    
            output_x(count) = dCopy(count);
            for ( int i=count-2; i > 0; i-- )
            {
                output_x(i) = dCopy(i) - cCopy(i)*output_x(i+1);
            }
            return true;
        }
        else
        {
            return false;
        }
    }
    
    int CubicSplineInterpolation::calInterpolationIndex( 
        double &pt, std::vector<double> &input_x )
    {
        const int count = input_x.size()-1;
        int index = -1;
        for ( int i=0; i<count; i++ )
        {
            if ( pt > input_x[i] && pt <= input_x[i+1] )
            {
                index = i;
                return index;
            }
        }
        return index;
    }
    
    void CubicSplineInterpolation::cubicMedianFilter( 
        std::vector<double> &input, const int filterSize /* = 5 */ )
    {
        const int count = input.size();
        for ( int i=filterSize/2; i<count-filterSize/2; i++ )
        {
            std::vector<double> temp(filterSize, 0.0);
            for ( int j=0; j<filterSize; j++ )
            {
                temp[j] = input[i+j - filterSize/2];
            }
    
            input[i] = cubicSort(temp);
    
            std::vector<double>().swap(temp);
        }
    
        for ( int i=0; i<filterSize/2; i++ )
        {
            std::vector<double> temp(filterSize, 0.0);
            for ( int j=0; j<filterSize; j++ )
            {
                temp[j] = input[j];
            }
    
            input[i] = cubicSort(temp);
            std::vector<double>().swap(temp);
        }
    
        for ( int i=count-filterSize/2; i<count; i++ )
        {
            std::vector<double> temp(filterSize, 0.0);
            for ( int j=0; j<filterSize; j++ )
            {
                temp[j] = input[j];
            }
    
            input[i] = cubicSort(temp);
            std::vector<double>().swap(temp);
        }
    }
    
    double CubicSplineInterpolation::cubicSort( std::vector<double> &input )
    {
        int iCount = input.size();
        for ( int j=0; j<iCount-1; j++ )
        {
            for ( int k=iCount-1; k>j; k-- )
            {
                if ( input[k-1] > input[k] )
                {
                    double tp  = input[k];
                    input[k]   = input[k-1];
                    input[k-1] = tp;
                }
            }
        }
        return input[iCount/2];
    }
    // main.cpp
    
    #include "CubicSplineInterpolation.h"
    
    void main()
    {
        double x[22] = {
            926.500000,
            928.000000,
            929.500000,
            931.000000,
            932.500000,
            934.000000,
            935.500000,
            937.000000,
            938.500000,
            940.000000,
            941.500000,
            943.000000,
            944.500000,
            946.000000,
            977.500000,
            980.500000,
            982.000000,
            983.500000,
            985.000000,
            986.500000,
            988.000000,
            989.500000};
    
        double y[22] = {
            381.732239,
            380.670530,
            380.297786,
            379.853896,
            379.272647,
            378.368584,
            379.319757,
            379.256485,
            380.233150,
            378.183257,
            377.543639,
            376.948999,
            376.253935,
            198.896327,
            670.369434,
            374.273702,
            372.498821,
            373.149402,
            372.139661,
            372.510891,
            372.772791,
            371.360553};
    
        std::vector<double> input_x(22), input_y(22);
        for ( int i=0; i<22; i++)
        {
            input_x[i] = x[i];
            input_y[i] = y[i];
        }
    
    
        CubicSplineCoeffs *cubicCoeffs;
        CubicSplineInterpolation cubicSpline;
        cubicSpline.calCubicSplineCoeffs(input_x, input_y, cubicCoeffs, CUBIC_NATURAL, CUBIC_MEDIAN_FILTER);
    
       std::vector<double> output_x, output_y;
       cubicSpline.cubicSplineInterpolation( cubicCoeffs, input_x, output_x, output_y );
    
        double xx(946.0), yy(0.0);
        cubicSpline.cubicSplineInterpolation2(cubicCoeffs, input_x, xx, yy);
        std::cout<<yy<<std::endl;
    
        std::ofstream outfile( "E:\test.txt", std::ios::out );
        if ( outfile )
        {
            for ( int i=0; i<output_y.size(); i++ )
            {
                outfile<<std::fixed<<setprecision(3)<<output_x[i]<<" "<<output_y[i]<<std::endl;
            }
        }
        outfile.close();
    }

    运行结果:

    插值点集如图所示:
    Results

    其中单独点插值的运行结果分别为:

    198.896 // yy, CUBIC_WITHOUT_FILTER
    376.949 // yy, CUBIC_MEDIAN_FILTER

    参考文献:
    1.https://en.wikipedia.org/wiki/Spline_(mathematics)
    2.http://www.cnblogs.com/xpvincent/archive/2013/01/26/2878092.html

  • 相关阅读:
    Binary Stirling Numbers
    Count the Buildings ( s1 )
    P3375 【模板】KMP字符串匹配
    POJ2151Check the difficulty of problems
    fbx 模型转换 export
    Linux --windows vs
    phyreengine 3.12.0 安装遇到的问题
    A trip through the graphics pipeline 2011 Part 10(翻译)
    服务端 unity
    nsight 使用问题
  • 原文地址:https://www.cnblogs.com/hehehaha/p/6332245.html
Copyright © 2020-2023  润新知