• Camera Calibration 相机标定:原理简介(三)


    3 绝对圆锥曲线

    在进一步了解相机标定前,有必要了解绝对圆锥曲线(Absolute Conic)这一概念。

    Conic


    对于一个3D空间的点x,其投影空间的坐标为:x~=[x1,x2,x3,x4]T。我们定义无穷远处的平面用符号Π表示,该平面内的投影空间点坐标满足x4=0,则位于圆锥曲线Ω上的点满足:

    {x21+x22+x23=0x4=0.(1)

    x=[x1,x2,x3]T是绝对圆锥曲线Ω上的点,如上图所示。由定义可知xTx=0,同时也有x~=[x1,x2,x3,0]T满足x~Tx~=0。读至此处,我们发现不管是ΠΩ,还是xx~都是存粹想象出来的,很难在实际生活里找到实例,但是科学就是这么迷人,给定一个起始点,想象和求知探索的渴求却不受其限制,直至永无止境。

    让我们再看公式(1),如果我们令:x=x1/x3y=x2/x3,显而易见,位于曲线Ω上的点方程就可以写成:x2+y2=1,这就是一个圆方程,只不过我们所想象出来的这个虚拟圆的半径为1,当然对于了解复数(Complex number)概念的我们,这并没什么不可。

    此时,或许我们会困惑,为什么要费尽心机想象出绝对圆锥曲线呢?原因在于绝对圆锥曲线所具有的一条重要特性:对于刚体变换具有不变性,这么说是不是有点不明觉厉,那就继续往下看。

    首先简单讲一下刚体变换:只有物体的位置(平移变换)和朝向(旋转变换)发生改变,而形状不变,得到的变换称为刚体变换。以三维刚体变换为例:

    x=[R  t]X(2)

    或者表述为:

    x=RX+t   or   x=R(X+C)(3)

    H=[R0t1],对于位于绝对圆锥曲线Ω上的点x~=[x0],刚体变换后的点x~可表示为:

    x~=Hx~=[Rx0](4)

    x很明显也是位于无穷远平面上的点,而且是位于同一绝对圆锥曲线Ω上点:

    xTx=(Rx)T(Rx)=xT(RTR)x=0(5)

    令绝对圆锥曲线Ω对应的图像称为ω,也被简记为IAC(Image of the absolute conic),当然这也是想象出来的~于是对于Ω上的任一点x,其像点m满足:

    m~=sA[R  t][x0]=sARx(6)

    m~ATA1m~=s2xTRTRx=s2xTx=0(7)

    因此,绝对圆锥曲线成像构成一个虚构曲线,并且由公式(7)可以看出,这个虚拟曲线由ATA1决定,这与相机的外参完全无关,而仅仅由相机内参决定。可以设想,如果我们找到了绝对圆锥曲线通过相机所成的图像,那就可以求解出相机内参。至此,我想大家也就明白为什么会提出Absolute Conic这一概念了吧。事实上,这一理论在相机自检校标定法(Self-calibration)中作为基础理论,十分重要。

    后续文章将会为大家介绍几种确定绝对圆锥曲线Ω对应的图像ω的方法。

  • 相关阅读:
    atitit查询表修改表字段没反应--解锁锁定的表
    atitit.自适应设计悬浮图片的大小and 位置
    .net 科学类型相关问题
    js eval()执行传参函数的写法
    oracle里如何将两个日期的时间差返回**时**分的格式
    .NET开源项目介绍及资源推荐:数据持久层
    highCharts 电流表、电压表
    win7 telnet命令无法使用
    ascx aspx ashx asmx 文件的作用
    Oracle 新建序列值
  • 原文地址:https://www.cnblogs.com/hehehaha/p/6332230.html
Copyright © 2020-2023  润新知