• C/C++ 图像二进制存储与读取



    本系列文章由 @yhl_leo 出品,转载请注明出处。
    文章链接: http://blog.csdn.net/yhl_leo/article/details/50782792


    在深度学习时,制作样本数据集时,需要产生和读取一些二进制图像的数据集,如MNISTCIFAR-10等都提供了适合C语言的二进制版本。

    以CIFAR-10的数据集为例,官网上有两段关键的介绍:

    二进制版本数据集格式为(图像大小为32x32):

    <1 x label><3072 x pixel>
    ...
    <1 x label><3072 x pixel>

    In other words, the first byte is the label of the first image, which is a number in the range 0-9. The next 3072 bytes are the values of the pixels of the image. The first 1024 bytes are the red channel values, the next 1024 the green, and the final 1024 the blue. The values are stored in row-major order, so the first 32 bytes are the red channel values of the first row of the image.

    由此,绘制一个简图:

    memory

    根据图像大小32x32 = 1024,不难知道,每个颜色值存储为1 byte,因此,对于单个图像的二进制存储与读取(先不管RGB颜色存储顺序),找了一张32x32的彩色lena图像,如下实现:

    #include <iostream>
    #include <stdio.h>
    #include <stdlib.h>
    
    #include "cv.h"
    #include "highgui.h"
    
    using namespace cv;
    using namespace std;
    
    void main()
    {
        FILE *fpw = fopen( "E:\patch.bin", "wb" );
        if ( fpw == NULL )
        {
            cout << "Open error!" << endl;
            fclose(fpw);
            return;
        }
    
        Mat image = imread("E:\lena32.jpg");
        if ( !image.data || image.channels() != 3 )
        {
            cout << "Image read failed or image channels isn't equal to 3."
                << endl;
            return;
        }
    
        // write image to binary format file
        int labelw = 1;
        int rows = image.rows;
        int cols = image.cols;
    
        fwrite( &labelw, sizeof(char), 1, fpw );
    
        char* dp = (char*)image.data;
        for ( int i=0; i<rows*cols; i++ )
        {
            fwrite( &dp[i*3],   sizeof(char), 1, fpw );
            fwrite( &dp[i*3+1], sizeof(char), 1, fpw );
            fwrite( &dp[i*3+2], sizeof(char), 1, fpw );
        }
        fclose(fpw);
    
        // read image from binary format file
        FILE *fpr = fopen( "E:\patch.bin", "rb" );
        if ( fpr == NULL )
        {
            cout << "Open error!" << endl;
            fclose(fpr);
            return;
        }
    
        int labelr(0);
        fread( &labelr, sizeof(char), 1, fpr );
    
        cout << "label: " << labelr << endl;
    
        Mat image2( rows, cols, CV_8UC3, Scalar::all(0) );
    
        char* pData = (char*)image2.data;
        for ( int i=0; i<rows*cols; i++ )
        {
            fread( &pData[i*3],   sizeof(char), 1, fpr );
            fread( &pData[i*3+1], sizeof(char), 1, fpr );
            fread( &pData[i*3+2], sizeof(char), 1, fpr );
        }
        fclose(fpr);
    
        imshow("1", image2);
        waitKey(0); 
    }

    运行结果如下:

    results

    再看图片属性:

    attribute

    与官网上的大小3073一致,那么这么存取应该没问题。

    严格按照官网的RGB通道分别存储,略作修改就可以实现:

    /*  for ( int i=0; i<rows*cols; i++ )
        {
            fwrite(&dp[i*3],   sizeof(char), 1, fpw);
            fwrite(&dp[i*3+1], sizeof(char), 1, fpw);
            fwrite(&dp[i*3+2], sizeof(char), 1, fpw);
        }
    */
    
        for ( int i=0; i<rows*cols; i++ )
            fwrite(&dp[i*3+2],   sizeof(char), 1, fpw); // R
    
        for ( int i=0; i<rows*cols; i++ )
            fwrite(&dp[i*3+1],   sizeof(char), 1, fpw); // G
    
        for ( int i=0; i<rows*cols; i++ )
            fwrite(&dp[i*3],   sizeof(char), 1, fpw);  // B

    存储和读取多张图片方法类似,这里就不做介绍。

    本文已同步于GitHub:yhlleo/image2binarytest

  • 相关阅读:
    DJANGO入门系列之(模型层:跨表操作)
    DJANGO入门系列之(模型层:单表操作)
    DJANGO入门系列之(模板层)
    DJANGO入门系列之(视图层)
    DJANGO入门系列之(模板层的简单介绍和视图层的扫尾)
    DJANGO入门系列之(虚拟环境的配置与安装)
    Django入门系列之(视图层基本概念)
    DJANGO入门系列之(路由控制)
    DJANGO入门系列之(Django请求生命周期and路由层)
    orm
  • 原文地址:https://www.cnblogs.com/hehehaha/p/6332154.html
Copyright © 2020-2023  润新知