• python 几种点积运算方式效率分析



    本系列文章由 @yhl_leo 出品,转载请注明出处。
    文章链接: http://blog.csdn.net/yhl_leo/article/details/51793984


    本文列举出几种python中常见的计算点积的方式,并统计随着向量维度的增大,各种方法的计算效率上的差异。

    运行环境:

    • CPU:Intel® Core™ i7-5930K @ 3.50GHz
    • Python: 2.7.6

    代码:

    from itertools import izip, starmap, imap
    import operator
    import numpy as np
    import time
    
    r = range(10000)
    
    # method 1
    np.dot(r,r)
    
    # method 2
    sum(starmap(operator.mul, izip(r,r)))
    
    # method 3
    out = 0
    for k in range(len(r)):
        out += r[k] * r[k]
    
    # method 4
    sum(map(operator.mul,r,r))
    
    # method 5
    sum(imap(operator.mul,r,r))
    
    # method 6
    sum(i*j for i, j in zip(r, r))

    统计在不同向量维度:

    10, 100, 1000, 2000, 3000, 4000, 5000, 8000, 10000

    各运行三次:

    10
    1. 0.000285 0.000188 0.000309
    2. 0.000117 6.3e-05 9.4e-05
    3. 9.9e-05 6.1e-05 9.2e-05
    4. 8.6e-05 4.4e-05 7.6e-05
    5. 5.7e-05 4e-05 6.99999999999e-05
    6. 9.3e-05 6e-05 8.29999999999e-05
    100
    1. 0.000513 0.00052 0.000504
    2. 0.000169 0.000162 0.000167
    3. 0.000451 0.000311 0.000288
    4. 0.000137 0.000144 0.000153
    5. 0.000131 0.000138 0.000141
    6. 0.000224 0.000271 0.000216
    1000
    1. 0.001683 0.001687 0.001679
    2. 0.000664 0.00065 0.000661
    3. 0.002238 0.002301 0.002582
    4. 0.000821 0.00089 0.00088
    5. 0.000707 0.000928 0.000822
    6. 0.001958 0.001948 0.00193
    2000
    1. 0.003138 0.00306 0.003158
    2. 0.001197 0.001089 0.001075
    3. 0.005211 0.004113 0.004399
    4. 0.001891 0.001826 0.001953
    5. 0.001415 0.001456 0.00173
    6. 0.003595 0.003884 0.004285
    3000
    1. 0.004468 0.004292 0.004507
    2. 0.001842 0.001727 0.001637
    3. 0.007802 0.007341 0.006858
    4. 0.002548 0.002274 0.0022
    5. 0.002374 0.002348 0.002335
    6. 0.005697 0.005613 0.005669
    4000
    1. 0.005946 0.005987 0.005954
    2. 0.002251 0.002102 0.002189
    3. 0.009069 0.010478 0.009226
    4. 0.003149 0.003699 0.003363
    5. 0.003032 0.003536 0.003142
    6. 0.012805 0.012598 0.012316
    5000
    1. 0.007411 0.00731 0.007234
    2. 0.002744 0.002508 0.002576
    3. 0.012194 0.01231 0.009216
    4. 0.003953 0.003815 0.003936
    5. 0.00354 0.002698 0.002948
    6. 0.013849 0.012262 0.015122
    8000
    1. 0.010604 0.011742 0.011604
    2. 0.004712 0.004703 0.005037
    3. 0.020271 0.014874 0.020436
    4. 0.007199 0.006417 0.007193
    5. 0.006887 0.006889 0.006892
    6. 0.021665 0.021659 0.021992
    10000
    1. 0.01461 0.013028 0.014307
    2. 0.005814 0.005789 0.005875
    3. 0.023581 0.025064 0.025116
    4. 0.008041 0.008833 0.008868
    5. 0.007898 0.008619 0.008925
    6. 0.025248 0.02643 0.026212

    取运行时间的均值,绘制成曲线图,可以看出,几种方法里,第2种方法的复杂度最小,随着向量维度的增加,时间消耗增加比较缓慢,而其他方法则相对较大。

  • 相关阅读:
    软件测试技术第一次作业编程中发生的错误与解决
    PHP+phpMyAdmin编程插入数据显示中文乱码的问题
    软件测试技术第三次作业——打印质数printPrimes()
    周总结
    课程看不懂的问题
    自我介绍
    周总结(第三周总结)
    目前流行的源程序版本管理软件和项目管理软件都有哪些, 各有什么优缺点?
    Python获取html页内容
    python 读写保存excel xlrd,xlwt,xlutils保留原样式、格式、背景样式、文字样式
  • 原文地址:https://www.cnblogs.com/hehehaha/p/6332120.html
Copyright © 2020-2023  润新知