今天用python实现分布式,基于python2.7,注意:在linux下执行测试通过,在windows测试失败。
# -*- coding: utf-8 -*-
__author__ = 'dell'
import random, time, Queue
from multiprocessing.managers import BaseManager
# 发送任务的队列:
task_queue = Queue.Queue()
# 接收结果的队列:
result_queue = Queue.Queue()
# 从BaseManager继承的QueueManager:
class QueueManager(BaseManager):
pass
# 把两个Queue都注册到网络上, callable参数关联了Queue对象:
QueueManager.register('get_task_queue', callable=lambda: task_queue)
QueueManager.register('get_result_queue', callable=lambda: result_queue)
# 绑定端口5000, 设置验证码'abc':
manager = QueueManager(address=('', 5000), authkey='abc')
# 启动Queue:
manager.start()
# 获得通过网络访问的Queue对象:
task = manager.get_task_queue()
result = manager.get_result_queue()
# 放几个任务进去:
for i in range(10):
n = random.randint(0, 10000)
print('Put task %d...' % n)
task.put(n)
# 从result队列读取结果:
print('Try get results...')
for i in range(10):
r = result.get(timeout=10)
print('Result: %s' % r)
# 关闭:
manager.shutdown()
=======================================
# -*- coding: utf-8 -*-
__author__ = 'dell'
import time, sys, Queue
from multiprocessing.managers import BaseManager
# 创建类似的QueueManager:
class QueueManager(BaseManager):
pass
# 由于这个QueueManager只从网络上获取Queue,所以注册时只提供名字:
QueueManager.register('get_task_queue')
QueueManager.register('get_result_queue')
# 连接到服务器,也就是运行taskmanager.py的机器:
server_addr = '127.0.0.1' #这里修改,如果是同一机器运行,不需要改;如果是别的机器运行,改为相应ip即可。
print('Connect to server %s...' % server_addr)
# 端口和验证码注意保持与taskmanager.py设置的完全一致:
m = QueueManager(address=(server_addr, 5000), authkey='abc')
# 从网络连接:
m.connect()
# 获取Queue的对象:
task = m.get_task_queue()
result = m.get_result_queue()
# 从task队列取任务,并把结果写入result队列:
for i in range(10):
try:
n = task.get(timeout=1)
print('run task %d * %d...' % (n, n))
r = '%d * %d = %d' % (n, n, n*n)
time.sleep(1)
result.put(r)
except Queue.Empty:
print('task queue is empty.')
# 处理结束:
print('worker exit.')