题目描述
LOJ题面:https://loj.ac/problem/2173。
洛谷题面:https://www.luogu.org/problemnew/show/P4609。
Solution
[CF960G] Bandit Blues这题的弱化版,直接暴力算斯特林数就好了。
不知道为什么这是省选题但是(bzoj)没有...
注意模数是(1e9+7)...我以为和原题一样被坑了好久。
#include<bits/stdc++.h>
using namespace std;
void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
}
void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('
');}
#define lf double
#define ll long long
const int maxn = 5e4+10;
const int inf = 1e9;
const lf eps = 1e-8;
const int mod = 1e9+7;
int qpow(int a,int x) {
int res=1;
for(;x;x>>=1,a=1ll*a*a%mod) if(x&1) res=1ll*res*a%mod;
return res;
}
int fac[maxn],ifac[maxn],n,a,b,s[maxn][203];
int main() {
s[0][0]=1;
for(int i=1;i<maxn;i++)
for(int j=1;j<=200;j++)
s[i][j]=(1ll*s[i-1][j-1]+1ll*(i-1)*s[i-1][j]%mod)%mod;
ifac[0]=fac[0]=1;
for(int i=1;i<=200;i++) fac[i]=1ll*fac[i-1]*i%mod;
ifac[200]=qpow(fac[200],mod-2);
for(int i=199;i;i--) ifac[i]=1ll*ifac[i+1]*(i+1)%mod;
int t;read(t);
while(t--) {
read(n),read(a),read(b);
if(!a||!b||n<a+b-1) {puts("0");continue;}
if(n==1) {puts("1");continue;}
write(1ll*s[n-1][a+b-2]*fac[a+b-2]%mod*ifac[a-1]%mod*ifac[b-1]%mod);
}
return 0;
}