• 【动手学深度学习pytorch】学习笔记 3.6. softmax回归的从零开始实现 pycharm


    这一节的学习中,动画展示效果很好。

    但是源代码是在Jupyter中编写的,pycharm中无法正常显示。看不到图,只能看到:<Figure size 700x500 with 1 Axes>

    添加2行代码就可以解决问题了。

    d2l.plt.draw()#

    d2l.plt.pause(0.001)#

    解决方案:李沐动手学深度学习 pytorch 在pycharm中无法显示动图_穷到学习的博客-CSDN博客_pycharm显示动态图

    import torch
    from IPython import display
    from d2l import torch as d2l
    
    batch_size = 256
    train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
    
    num_inputs = 784
    num_outputs = 10
    
    W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
    b = torch.zeros(num_outputs, requires_grad=True)
    
    X = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
    print(X.sum(0, keepdim=True), X.sum(1, keepdim=True))
    
    
    def softmax(X):
        X_exp = torch.exp(X)
        partition = X_exp.sum(1, keepdim=True)
        return X_exp / partition  # 这里应用了广播机制
    
    
    X = torch.normal(0, 1, (2, 5))
    X_prob = softmax(X)
    print(X_prob, X_prob.sum(1))
    
    
    def net(X):
        return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)
    
    
    y = torch.tensor([0, 2])
    y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
    y_hat[[0, 1], y]
    
    
    def cross_entropy(y_hat, y):
        return - torch.log(y_hat[range(len(y_hat)), y])
    
    
    print("cross_entropy:", cross_entropy(y_hat, y))
    
    def accuracy(y_hat, y):  #@save
        """计算预测正确的数量"""
        if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
            y_hat = y_hat.argmax(axis=1)
        cmp = y_hat.type(y.dtype) == y
        return float(cmp.type(y.dtype).sum())
    
    print("accuracy:", accuracy(y_hat, y) / len(y))
    
    
    def evaluate_accuracy(net, data_iter):  #@save
        """计算在指定数据集上模型的精度"""
        if isinstance(net, torch.nn.Module):
            net.eval()  # 将模型设置为评估模式
        metric = Accumulator(2)  # 正确预测数、预测总数
        with torch.no_grad():
            for X, y in data_iter:
                metric.add(accuracy(net(X), y), y.numel())
        return metric[0] / metric[1]
    
    class Accumulator:  #@save
        """在n个变量上累加"""
        def __init__(self, n):
            self.data = [0.0] * n
    
        def add(self, *args):
            self.data = [a + float(b) for a, b in zip(self.data, args)]
    
        def reset(self):
            self.data = [0.0] * len(self.data)
    
        def __getitem__(self, idx):
            return self.data[idx]
    
    def train_epoch_ch3(net, train_iter, loss, updater):  #@save
        """训练模型一个迭代周期(定义见第3章)"""
        # 将模型设置为训练模式
        if isinstance(net, torch.nn.Module):
            net.train()
        # 训练损失总和、训练准确度总和、样本数
        metric = Accumulator(3)
        for X, y in train_iter:
            # 计算梯度并更新参数
            y_hat = net(X)
            l = loss(y_hat, y)
            if isinstance(updater, torch.optim.Optimizer):
                # 使用PyTorch内置的优化器和损失函数
                updater.zero_grad()
                l.mean().backward()
                updater.step()
            else:
                # 使用定制的优化器和损失函数
                l.sum().backward()
                updater(X.shape[0])
            metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
        # 返回训练损失和训练精度
        return metric[0] / metric[2], metric[1] / metric[2]
    
    class Animator:  #@save
        """在动画中绘制数据"""
        def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                     ylim=None, xscale='linear', yscale='linear',
                     fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
                     figsize=(3.5*2, 2.5*2)):
            # 增量地绘制多条线
            if legend is None:
                legend = []
            d2l.use_svg_display()
            self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
            if nrows * ncols == 1:
                self.axes = [self.axes, ]
            # 使用lambda函数捕获参数
            self.config_axes = lambda: d2l.set_axes(
                self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
            self.X, self.Y, self.fmts = None, None, fmts
    
        def add(self, x, y):
            # 向图表中添加多个数据点
            if not hasattr(y, "__len__"):
                y = [y]
            n = len(y)
            if not hasattr(x, "__len__"):
                x = [x] * n
            if not self.X:
                self.X = [[] for _ in range(n)]
            if not self.Y:
                self.Y = [[] for _ in range(n)]
            for i, (a, b) in enumerate(zip(x, y)):
                if a is not None and b is not None:
                    self.X[i].append(a)
                    self.Y[i].append(b)
            self.axes[0].cla()
            for x, y, fmt in zip(self.X, self.Y, self.fmts):
                self.axes[0].plot(x, y, fmt)
            self.config_axes()
            display.display(self.fig)
            d2l.plt.draw()#
            d2l.plt.pause(0.001)#
            display.clear_output(wait=True)
    
    def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):  #@save
        """训练模型(定义见第3章)"""
        animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
                            legend=['train loss', 'train acc', 'test acc'])
        for epoch in range(num_epochs):
            train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
            test_acc = evaluate_accuracy(net, test_iter)
            animator.add(epoch + 1, train_metrics + (test_acc,))
        train_loss, train_acc = train_metrics
        assert train_loss < 0.5, train_loss
        assert train_acc <= 1 and train_acc > 0.7, train_acc
        assert test_acc <= 1 and test_acc > 0.7, test_acc
    
    
    def predict_ch3(net, test_iter, n=6):  #@save
        """预测标签(定义见第3章)"""
        for X, y in test_iter:
            break
        trues = d2l.get_fashion_mnist_labels(y)
        preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
        titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
        d2l.show_images(X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])
    
    
    
    
    if __name__ == '__main__': # https://blog.csdn.net/BBJG_001/article/details/104354990 多线程,写到这里面,否则报错 2022.7.2
        # print(evaluate_accuracy(net, test_iter))
        lr = 0.1
    
    
        def updater(batch_size):
            return d2l.sgd([W, b], lr, batch_size)
    
    
        num_epochs = 10
        train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)
    
        predict_ch3(net, test_iter)
    
        d2l.plt.show()

     

  • 相关阅读:
    格式化时间
    鼠标经过,图片放大事件
    reboot 后 Docker服务及容器自动启动设置
    gin 单个文件函数 上传文件到本地目录里
    深度Linux deepin更新,防火墙操作
    第四篇 mybatis的运行原理(1):重要组件的介绍
    第三篇 常用配置和动态SQL
    第二篇 mybatis的入门
    记一次强转bug
    第一篇 mybatis的简介
  • 原文地址:https://www.cnblogs.com/hbuwyg/p/16437758.html
Copyright © 2020-2023  润新知