Logistic回归
查看代码
import tensorflow as tf
import matplotlib.pyplot as plt
from matplotlib import animation, rc
from IPython.display import HTML
import matplotlib.cm as cm
import numpy as np
dot_num = 100
x_p = np.random.normal(3., 1, dot_num)
print(x_p[0].dtype) # 检查数据类型
x_p = np.float32(x_p) # 转换为 float32 Edit by David 2022.6.1
print(x_p[0].dtype) # 检查数据类型
y_p = np.random.normal(6., 1, dot_num)
y_p = np.float32(y_p) # 转换为 float32
y = np.ones(dot_num)
# print(y[0].dtype) # 检查数据类型
y = np.float32(y) # 转换为 float32
C1 = np.array([x_p, y_p, y]).T
x_n = np.random.normal(6., 1, dot_num)
x_n = np.float32(x_n) # 转换为 float32
y_n = np.random.normal(3., 1, dot_num)
y_n = np.float32(y_n) # 转换为 float32
y = np.zeros(dot_num)
y = np.float32(y) # 转换为 float32
C2 = np.array([x_n, y_n, y]).T
# plt.scatter(C1[:, 0], C1[:, 1], c='b', marker='+')
# plt.scatter(C2[:, 0], C2[:, 1], c='g', marker='o')
data_set = np.concatenate((C1, C2), axis=0)
np.random.shuffle(data_set)
epsilon = 1e-12
class LogisticRegression():
def __init__(self):
self.W = tf.Variable(shape=[2, 1], dtype=tf.float32,
initial_value=tf.random.uniform(shape=[2, 1], minval=-0.1, maxval=0.1))
self.b = tf.Variable(shape=[1], dtype=tf.float32, initial_value=tf.zeros(shape=[1]))
self.trainable_variables = [self.W, self.b]
@tf.function
def __call__(self, inp):
logits = tf.matmul(inp, self.W) + self.b # shape(N, 1)
pred = tf.nn.sigmoid(logits)
return pred
# @tf.function Edit by David 2022.6.1
def compute_loss(pred, label):
# print(label)
if not isinstance(label, tf.Tensor): # isinstance()是Python中的一个内建函数。是用来判断一个对象的变量类型。
label = tf.constant(label, dtype=tf.float32) # 创建常量
pred = tf.squeeze(pred, axis=1)
'''============================='''
# 输入label shape(N,), pred shape(N,)
# 输出 losses shape(N,) 每一个样本一个loss
# todo 填空一,实现sigmoid的交叉熵损失函数(不使用tf内置的loss 函数)
losses = -label * tf.math.log(pred + epsilon) - (1. - label) * tf.math.log(1. - pred + epsilon)
'''============================='''
loss = tf.reduce_mean(losses)
pred = tf.where(pred > 0.5, tf.ones_like(pred), tf.zeros_like(pred))
accuracy = tf.reduce_mean(tf.cast(tf.equal(label, pred), dtype=tf.float32))
return loss, accuracy
# @tf.function Edit by David 2022.6.1
def train_one_step(model, optimizer, x, y):
with tf.GradientTape() as tape:
pred = model(x)
loss, accuracy = compute_loss(pred, y)
grads = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
return loss, accuracy, model.W, model.b
if __name__ == '__main__':
model = LogisticRegression()
opt = tf.keras.optimizers.SGD(learning_rate=0.01)
x1, x2, y = list(zip(*data_set))
x = list(zip(x1, x2))
# animation_fram = []
for i in range(200):
loss, accuracy, W_opt, b_opt = train_one_step(model, opt, x, y)
# animation_fram.append((W_opt.numpy()[0, 0], W_opt.numpy()[1, 0], b_opt.numpy(), loss.numpy()))
if i % 20 == 0:
print(f'loss: {loss.numpy():.4}\t accuracy: {accuracy.numpy():.4}')
print(f'W_opt: {W_opt.numpy()}\t b_opt: {b_opt.numpy()}')
plt.scatter(C1[:, 0], C1[:, 1], c='b', marker='+')
plt.scatter(C2[:, 0], C2[:, 1], c='g', marker='o')
# plt.scatter(C3[:, 0], C3[:, 1], c='r', marker='*')
print(W_opt.numpy()[0, 0], W_opt.numpy()[1, 0], b_opt.numpy(), loss.numpy())
x = np.arange(0., 10., 0.1)
y = np.arange(0., 10., 0.1)
# yy = a/-b * xx +c/-b # copy from NNDL练习,不懂什么意思 ~ David 2022.6.1
y = W_opt.numpy()[0, 0] / -W_opt.numpy()[1, 0] * x + b_opt.numpy() / -W_opt.numpy()[1, 0]
plt.xlim(0, 10)
plt.ylim(0, 10)
plt.plot(x, y)
plt.legend()
plt.show()
softmax回归
查看代码
import tensorflow as tf
import matplotlib.pyplot as plt
from matplotlib import animation, rc
from IPython.display import HTML
import matplotlib.cm as cm
import numpy as np
dot_num = 100
x_p = np.random.normal(3., 1, dot_num)
x_p = np.float32(x_p) # 转换为 float32 Edit by David 2022.6.1
y_p = np.random.normal(6., 1, dot_num)
y_p = np.float32(y_p) # 转换为 float32 Edit by David 2022.6.1
y = np.ones(dot_num)
y = np.float32(y) # 转换为 float32
C1 = np.array([x_p, y_p, y]).T
x_n = np.random.normal(6., 1, dot_num)
x_n = np.float32(x_n) # 转换为 float32 Edit by David 2022.6.1
y_n = np.random.normal(3., 1, dot_num)
y_n = np.float32(y_n) # 转换为 float32 Edit by David 2022.6.1
y = np.zeros(dot_num)
y = np.float32(y) # 转换为 float32
C2 = np.array([x_n, y_n, y]).T
x_b = np.random.normal(7., 1, dot_num)
x_b = np.float32(x_b) # 转换为 float32 Edit by David 2022.6.1
y_b = np.random.normal(7., 1, dot_num)
y_b = np.float32(y_b) # 转换为 float32 Edit by David 2022.6.1
y = np.ones(dot_num)*2
y = np.float32(y) # 转换为 float32
C3 = np.array([x_b, y_b, y]).T
plt.scatter(C1[:, 0], C1[:, 1], c='b', marker='+')
plt.scatter(C2[:, 0], C2[:, 1], c='g', marker='o')
plt.scatter(C3[:, 0], C3[:, 1], c='r', marker='*')
data_set = np.concatenate((C1, C2, C3), axis=0)
np.random.shuffle(data_set)
epsilon = 1e-12
class SoftmaxRegression():
def __init__(self):
'''============================='''
# todo 填空一,构建模型所需的参数 self.W, self.b 可以参考logistic-regression-exercise
'''============================='''
self.W = tf.Variable(shape=[2, 3], dtype=tf.float32,
initial_value=tf.random.uniform(shape=[2, 3], minval=-0.1, maxval=0.1))
self.b = tf.Variable(shape=[1, 3], dtype=tf.float32, initial_value=tf.zeros(shape=[1, 3]))
self.trainable_variables = [self.W, self.b]
@tf.function
def __call__(self, inp):
logits = tf.matmul(inp, self.W) + self.b # shape(N, 3)
pred = tf.nn.softmax(logits)
return pred
@tf.function
def compute_loss(pred, label):
label = tf.one_hot(tf.cast(label, dtype=tf.int32), dtype=tf.float32, depth=3)
'''============================='''
# 输入label shape(N, 3), pred shape(N, 3)
# 输出 losses shape(N,) 每一个样本一个loss
# todo 填空二,实现softmax的交叉熵损失函数(不使用tf内置的loss 函数)
'''============================='''
losses = -tf.reduce_mean(label * tf.math.log(pred + epsilon))
loss = tf.reduce_mean(losses)
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(label, axis=1), tf.argmax(pred, axis=1)), dtype=tf.float32))
return loss, accuracy
@tf.function
def train_one_step(model, optimizer, x, y):
with tf.GradientTape() as tape:
pred = model(x)
loss, accuracy = compute_loss(pred, y)
grads = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
return loss, accuracy
model = SoftmaxRegression()
opt = tf.keras.optimizers.SGD(learning_rate=0.01)
x1, x2, y = list(zip(*data_set))
x = list(zip(x1, x2))
for i in range(1000):
loss, accuracy = train_one_step(model, opt, x, y)
if i%50==49:
print(f'loss: {loss.numpy():.4}\t accuracy: {accuracy.numpy():.4}')
plt.scatter(C1[:, 0], C1[:, 1], c='b', marker='+')
plt.scatter(C2[:, 0], C2[:, 1], c='g', marker='o')
plt.scatter(C3[:, 0], C3[:, 1], c='r', marker='*')
x = np.arange(0., 10., 0.1)
y = np.arange(0., 10., 0.1)
X, Y = np.meshgrid(x, y)
inp = np.array(list(zip(X.reshape(-1), Y.reshape(-1))), dtype=np.float32)
print(inp.shape)
Z = model(inp)
Z = np.argmax(Z, axis=1)
Z = Z.reshape(X.shape)
plt.contour(X,Y,Z)
plt.show()