• 神经网络与深度学习(邱锡鹏)编程练习 2 实验3 基函数回归(最小二乘法优化)


    通过基函数对元素数据进行交换,从而将变量间的线性回归模型转换为非线性回归模型

    1. 最小二乘法 + 多项式基函数
    2. 最小二乘法 + 高斯基函数
    
    def multinomial_basis(x, feature_num=10):
        x = np.expand_dims(x, axis=1) # shape(N, 1)
        feat = [x]
        for i in range(2, feature_num+1):
            feat.append(x**i)
        ret = np.concatenate(feat, axis=1)
        return ret
    
    def gaussian_basis(x, feature_num=10):
        centers = np.linspace(0, 25, feature_num)
        width = 1.0 * (centers[1] - centers[0])
        x = np.expand_dims(x, axis=1)
        x = np.concatenate([x]*feature_num, axis=1)
        
        out = (x-centers)/width
        ret = np.exp(-0.5 * out ** 2)
        return ret

    实验结果:

    实验结果分析:

    多项式回归(多项式基函数)比线性回归更好的拟合了数据

    高斯基函数拟合效果比多项式基函数拟合效果更好

     

    多项式基函数源代码:

    查看代码
    
    import numpy as np
    import matplotlib.pyplot as plt
    
    
    def load_data(filename):  # 载入数据
        xys = []
        with open(filename, 'r') as f:
            for line in f:
                xys.append(map(float, line.strip().split()))
            xs, ys = zip(*xys)
            return np.asarray(xs), np.asarray(ys)
    
    
    def multinomial_basis(x, feature_num=10):
        x = np.expand_dims(x, axis=1)  # shape(N, 1)
        feat = [x]
        for i in range(2, feature_num + 1):
            feat.append(x ** i)
        ret = np.concatenate(feat, axis=1)
        return ret
    
    
    def main(x_train, y_train):  # 训练模型,并返回从x到y的映射。
        basis_func = multinomial_basis  # shape(N, 1)的函数
        phi0 = np.expand_dims(np.ones_like(x_train), axis=1)  # shape(N,1)大小的全1 array
        phi1 = basis_func(x_train)  # 将x_train的shape转换为(N, 1)
        phi = np.concatenate([phi0, phi1], axis=1)  # phi.shape=(300,2) phi是增广特征向量的转置
        print("phi shape = ", phi.shape)
        # 使用最小二乘法优化w
        w = np.dot(np.linalg.pinv(phi), y_train)  # np.linalg.pinv(phi)求phi的伪逆矩阵(phi不是列满秩) w.shape=[2,1]
        print("参数 w = ", w)
    
        def f(x):
            phi0 = np.expand_dims(np.ones_like(x), axis=1)
            phi1 = basis_func(x)
            phi = np.concatenate([phi0, phi1], axis=1)
            y = np.dot(phi, w)  # 矩阵乘法
            return y
    
        return f
    
    
    def evaluate(ys, ys_pred):  # 评估模型
        std = np.sqrt(np.mean(np.abs(ys - ys_pred) ** 2))
        return std
    
    
    if __name__ == '__main__':  # 程序主入口(建议不要改动以下函数的接口)
        train_file = 'train.txt'
        test_file = 'test.txt'
        # 载入数据
        x_train, y_train = load_data(train_file)
        x_test, y_test = load_data(test_file)
        print("x_train shape:", x_train.shape)
        print("x_test shape:", x_test.shape)
    
        # 训练模型,返回一个函数f()使得 y = f(x)
        f = main(x_train, y_train)
    
        y_train_pred = f(x_train)  # 训练集 预测值
        std = evaluate(y_train, y_train_pred) # 使用训练集评估模型
        print('训练集 预测值与真实值的标准差:{:.1f}'.format(std))
    
        y_test_pred = f(x_test)  # 测试集 预测值
        std = evaluate(y_test, y_test_pred)  # 使用测试集评估模型
        print('测试集 预测值与真实值的标准差:{:.1f}'.format(std))
    
        # 显示结果
        # plt.plot(x_train, y_train, 'r.')  # 训练集
        plt.plot(x_test, y_test, 'b.')  # 测试集
        plt.plot(x_test, y_test_pred, 'k.')  # 测试集 的 预测值
        plt.xlabel('x')
        plt.ylabel('y')
        plt.title('Linear Regression')
        plt.legend(['train', 'test', 'pred'])
        plt.show()

    高斯基函数源代码:

    查看代码
    
    import numpy as np
    import matplotlib.pyplot as plt
    
    
    def load_data(filename):  # 载入数据
        xys = []
        with open(filename, 'r') as f:
            for line in f:
                xys.append(map(float, line.strip().split()))
            xs, ys = zip(*xys)
            return np.asarray(xs), np.asarray(ys)
    
    
    def gaussian_basis(x, feature_num=10):
        centers = np.linspace(0, 25, feature_num)
        width = 1.0 * (centers[1] - centers[0])
        x = np.expand_dims(x, axis=1)
        x = np.concatenate([x] * feature_num, axis=1)
    
        out = (x - centers) / width
        ret = np.exp(-0.5 * out ** 2)
        return ret
    
    
    def main(x_train, y_train):  # 训练模型,并返回从x到y的映射。
        basis_func = gaussian_basis  # shape(N, 1)的函数
        phi0 = np.expand_dims(np.ones_like(x_train), axis=1)  # shape(N,1)大小的全1 array
        phi1 = basis_func(x_train)  # 将x_train的shape转换为(N, 1)
        phi = np.concatenate([phi0, phi1], axis=1)  # phi.shape=(300,2) phi是增广特征向量的转置
        print("phi shape = ", phi.shape)
        # 使用最小二乘法优化w
        w = np.dot(np.linalg.pinv(phi), y_train)  # np.linalg.pinv(phi)求phi的伪逆矩阵(phi不是列满秩) w.shape=[2,1]
        print("参数 w = ", w)
    
        def f(x):
            phi0 = np.expand_dims(np.ones_like(x), axis=1)
            phi1 = basis_func(x)
            phi = np.concatenate([phi0, phi1], axis=1)
            y = np.dot(phi, w)  # 矩阵乘法
            return y
    
        return f
    
    
    def evaluate(ys, ys_pred):  # 评估模型
        std = np.sqrt(np.mean(np.abs(ys - ys_pred) ** 2))
        return std
    
    
    if __name__ == '__main__':  # 程序主入口(建议不要改动以下函数的接口)
        train_file = 'train.txt'
        test_file = 'test.txt'
        # 载入数据
        x_train, y_train = load_data(train_file)
        x_test, y_test = load_data(test_file)
        print("x_train shape:", x_train.shape)
        print("x_test shape:", x_test.shape)
    
        # 训练模型,返回一个函数f()使得 y = f(x)
        f = main(x_train, y_train)
    
        y_train_pred = f(x_train)  # 训练集 预测值
        std = evaluate(y_train, y_train_pred) # 使用训练集评估模型
        print('训练集 预测值与真实值的标准差:{:.1f}'.format(std))
    
        y_test_pred = f(x_test)  # 测试集 预测值
        std = evaluate(y_test, y_test_pred)  # 使用测试集评估模型
        print('测试集 预测值与真实值的标准差:{:.1f}'.format(std))
    
        # 显示结果
        # plt.plot(x_train, y_train, 'r.')  # 训练集
        plt.plot(x_test, y_test, 'b.')  # 测试集
        plt.plot(x_test, y_test_pred, 'k.')  # 测试集 的 预测值
        plt.xlabel('x')
        plt.ylabel('y')
        plt.title('Linear Regression')
        plt.legend(['train', 'test', 'pred'])
        plt.show()
  • 相关阅读:
    单片机、嵌入式ARM学习网站推荐(多年的积累)
    单片机心得
    printf函数解析
    C语言数组与指针详解
    C语言数组与指针详解
    单片机心得
    单片机、嵌入式ARM学习网站推荐(多年的积累)
    嵌入式开发资料集锦
    poj1941
    poj1723
  • 原文地址:https://www.cnblogs.com/hbuwyg/p/16327226.html
Copyright © 2020-2023  润新知