• CNN: MINST


    import keras
    print(keras.__version__)
    
    2.7.0
    
    from keras import Sequential
    from keras.datasets import mnist
    from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense
    from keras.utils import np_utils
    from tensorflow.keras.optimizers import RMSprop
    
    import matplotlib.pyplot as plt
    

    数据预处理

    # 一些参数
    batch_size = 128
    epochs = 10
    num_classes = 10
    img_rows, img_cols = 28, 28
    input_shape = (img_rows, img_cols, 1)   # 输入数据形状
    
    # 获取数据
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    
    # 归一化
    x_train = x_train.astype('float32') / 255.0
    x_test = x_test.astype('float32') / 255.0
    
    # 改变数据形状,格式为(n_samples, rows, cols, channels)
    x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
    x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
    
    # 控制台打印输出样本数量信息
    print(x_train.shape[0], 'train samples')
    print(x_test.shape[0], 'test samples')
    
    60000 train samples
    10000 test samples
    

    one-hot 编码

    https://blog.csdn.net/dulingtingzi/article/details/51374487

    # 样本标签转化为one-hot编码格式
    y_train = np_utils.to_categorical(y_train, num_classes)
    y_test = np_utils.to_categorical(y_test, num_classes)
    

    创建CNN模型

    顺序模型 (Keras提供的模型为两类:Sequential 顺序模型;Model 类模型)

    https://blog.csdn.net/weixin_42886817/article/details/99831718

    model = Sequential() 
    

    过滤 卷积核 激活函数 输入形状

    model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu',input_shape=input_shape))
    model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu'))# 卷积核 3*3
    

    最大池化 MaxPooling

    model.add(MaxPooling2D(pool_size=(2, 2))) 
    

    防止过拟合 Dropout

    model.add(Dropout(rate=0.2)) 
    
    model.add(Flatten())#填充空白区域
    

    全连接层 Dense,激活函数 relu

    model.add(Dense(units=128, activation='relu'))
    
    model.add(Dropout(rate=0.5))
    

    softmax分类

    model.add(Dense(num_classes, activation='softmax'))
    

    在控制台输出模型参数信息

    model.summary()     
    
    Model: "sequential"
    _________________________________________________________________
     Layer (type)                Output Shape              Param #   
    =================================================================
     conv2d (Conv2D)             (None, 26, 26, 32)        320       
                                                                     
     conv2d_1 (Conv2D)           (None, 24, 24, 64)        18496     
                                                                     
     max_pooling2d (MaxPooling2D  (None, 12, 12, 64)       0         
     )                                                               
                                                                     
     dropout (Dropout)           (None, 12, 12, 64)        0         
                                                                     
     flatten (Flatten)           (None, 9216)              0         
                                                                     
     dense (Dense)               (None, 128)               1179776   
                                                                     
     dropout_1 (Dropout)         (None, 128)               0         
                                                                     
     dense_1 (Dense)             (None, 10)                1290      
                                                                     
    =================================================================
    Total params: 1,199,882
    Trainable params: 1,199,882
    Non-trainable params: 0
    _________________________________________________________________
    

    学习率(步长): 分别测试 learning_rate=0.1 和 0.01 ,观察实验结果

    损失函数 交叉熵损失函数:categorical_crossentropy

    rmsprop = RMSprop(learning_rate=0.01, rho=0.9, epsilon=1e-08, decay=0.0) 
    # 学习率learning_rate 
    # rho:大或等于0的浮点数
    # epsilon:大或等于0的小浮点数,防止除0错误
    
    model.compile(loss=keras.losses.categorical_crossentropy,
                  optimizer=rmsprop,
                  metrics=['accuracy'])
    

    训练模型

    # 训练模型
    model.fit(x_train, y_train,
              batch_size=batch_size,
              epochs=epochs,
              verbose=1,
              validation_data=(x_test, y_test))
    
    Epoch 1/10
    469/469 [==============================] - 99s 208ms/step - loss: 0.2891 - accuracy: 0.9191 - val_loss: 0.1135 - val_accuracy: 0.9717
    Epoch 2/10
    469/469 [==============================] - 99s 211ms/step - loss: 0.1171 - accuracy: 0.9682 - val_loss: 0.0558 - val_accuracy: 0.9847
    Epoch 3/10
    469/469 [==============================] - 100s 214ms/step - loss: 0.1118 - accuracy: 0.9710 - val_loss: 0.0601 - val_accuracy: 0.9837
    Epoch 4/10
    469/469 [==============================] - 100s 212ms/step - loss: 0.1121 - accuracy: 0.9713 - val_loss: 0.0763 - val_accuracy: 0.9823
    Epoch 5/10
    469/469 [==============================] - 100s 213ms/step - loss: 0.1144 - accuracy: 0.9723 - val_loss: 0.0537 - val_accuracy: 0.9864
    Epoch 6/10
    469/469 [==============================] - 100s 214ms/step - loss: 0.1250 - accuracy: 0.9709 - val_loss: 0.0687 - val_accuracy: 0.9870
    Epoch 7/10
    469/469 [==============================] - 100s 213ms/step - loss: 0.1359 - accuracy: 0.9700 - val_loss: 0.0571 - val_accuracy: 0.9869
    Epoch 8/10
    469/469 [==============================] - 100s 214ms/step - loss: 0.1342 - accuracy: 0.9702 - val_loss: 0.1563 - val_accuracy: 0.9809
    Epoch 9/10
    469/469 [==============================] - 101s 214ms/step - loss: 0.1493 - accuracy: 0.9682 - val_loss: 0.0715 - val_accuracy: 0.9860
    Epoch 10/10
    469/469 [==============================] - 100s 212ms/step - loss: 0.1498 - accuracy: 0.9673 - val_loss: 0.0730 - val_accuracy: 0.9808
    
    
    
    
    
    <keras.callbacks.History at 0x17db07a0f40>
    

    预测

    n = 5   # 给出需要预测的图片数量,为了方便,只取前5张图片
    predicted_number = model.predict(x_test[:n], n)
    

    画图

    # 画图
    plt.figure(figsize=(10, 3))
    for i in range(n):
        plt.subplot(1, n, i + 1)
        t = x_test[i].reshape(28, 28)   # 向量需要reshape为矩阵
        plt.imshow(t, cmap='gray')      # 以灰度图显示
        plt.subplots_adjust(wspace=2)   # 调整子图间的间距,挨太紧了不好看
        # 第一个数字是真实标签,第二个数字是预测数值
        # 如果预测正确,绿色显示,否则红色显示
        # 预测结果是one-hot编码,需要转化为数字
        if y_test[i].argmax() == predicted_number[i].argmax():
            plt.title('%d\n%d' % (y_test[i].argmax(), predicted_number[i].argmax()), color='green')
        else:
            plt.title('%d,%d' % (y_test[i].argmax(), predicted_number[i].argmax()), color='red')
        plt.xticks([])  # 取消x轴刻度
        plt.yticks([])
    plt.show()
    

    
    
  • 相关阅读:
    给数据库带来的挑战
    微服务vs传统开发
    服务拆分原则
    架构演化的步骤
    如何进行微服务架构演进
    为什么选择使用Spring Cloud而放弃了Dubbo
    Spring Cloud体系介绍
    Spring Cloud都做了哪些事
    什么是Spring Boot
    微服务架构优势
  • 原文地址:https://www.cnblogs.com/hbuwyg/p/15571947.html
Copyright © 2020-2023  润新知