Day1T1
太长了不复制了, 看这里http://wikioi.com/problem/1197/
简单的字符串替换问题.
1 #include <stdio.h> 2 #include <string.h> 3 char k[102], str[1002]; 4 int main() 5 { 6 scanf("%s%s", k, str); 7 for (int i = 0, len = strlen(k); i < len; ++i) 8 if (k[i] >= 'A' && k[i] <= 'Z') 9 k[i] = 'a' + (k[i] - 'A'); 10 for (int i = 0, p = 0, len = strlen(str), lenk = strlen(k); i < len; ++i, ++p, p = (p == lenk ? 0 : p)) 11 if (str[i] >= 'A' && str[i] <= 'Z') 12 { 13 str[i] = str[i] - (k[p] - 'a'); 14 if (str[i] - 'A' < 0) 15 str[i] += 26; 16 } 17 else 18 { 19 str[i] = str[i] - (k[p] - 'a'); 20 if (str[i] - 'a' < 0) 21 str[i] += 26; 22 } 23 printf("%s\n", str); 24 return 0; 25 }
Day1T2
题目:http://wikioi.com/problem/1198/
给出一些二元组(Ai, Bi), 将他们按某种顺序排列. 对于每个二元组, 有一个值Fi, 计算方式是他之前所有二元组的Ai乘起来, 除以该二元组的Bi. 使得Max{F1, F2, F3 ... Fn}最小.
考虑交换相邻两个二元组的影响, 交换二元组i和二元组i+1,实际上只影响到Fi和Fi+1。
设T = A1 * A2 * ... * Ai-2 * Ai-1
方案A: Fi = T / Bi, Fi+1 =T * Ai / Bi+1
方案B: Fi = T / Bi+1, Fi+1 =T * Ai+1 / Bi
①假设1 / Bi < Ai / Bi+1, 1 / Bi+1 < Ai+1 / Bi
那么方案A优于方案B(Ai / Bi+1 < Ai+1 / Bi, Ai * Bi < Ai+1 * B i+1)
②假设1 / Bi ≥ Ai / Bi+1(Ai * Bi ≤ Bi+1)
那么1 / Bi ≤ Ai+1 / Bi, 方案A更优
③假设1 / Bi+1 ≥ Ai+1 / Bi(Ai+1 * Bi+1 ≤ Bi)
那么1 / Bi+1 ≤ Ai / Bi+1, 方案B更优
也就是说, 对于相邻两个二元组, 将A * B的较小的放在前面总能使答案更优.
实现要使用高精度, 结束.
1 #include <stdio.h> 2 #include <stdlib.h> 3 #include <string.h> 4 #define MAXN 1001 5 struct Person 6 { 7 int a, b; 8 } p[MAXN]; 9 struct High 10 { 11 int len; 12 int num[4001]; 13 }; 14 int n; 15 bool operator < (Person n1, Person n2) 16 { 17 return n1.a * n1.b < n2.a * n2.b; 18 } 19 bool operator > (High n1, High n2) 20 { 21 if (n1.len > n2.len) 22 return true; 23 if (n1.len < n2.len) 24 return false; 25 for (int i = n1.len - 1; i > -1; --i) 26 { 27 if (n1.num[i] > n2.num[i]) 28 return true; 29 if (n1.num[i] < n2.num[i]) 30 return false; 31 } 32 return true; 33 } 34 High operator * (High n1, int number) 35 { 36 int k = 0; 37 n1.len += 5; 38 for (int i = 0; i < n1.len; ++i) 39 n1.num[i] *= number; 40 for (int i = 0; i < n1.len; ++i) 41 { 42 n1.num[i] += k; 43 k = n1.num[i]/10; 44 n1.num[i] %= 10; 45 } 46 while (n1.num[n1.len - 1] == 0) 47 --n1.len; 48 return n1; 49 } 50 High operator / (High n1, int number) 51 { 52 High ans; 53 memset(ans.num, 0, sizeof ans.num); 54 ans.len = 0; 55 int now = 0; 56 for (int i = n1.len - 1; i > -1; --i) 57 { 58 now = now * 10 + n1.num[i]; 59 if (now < number && ans.len == 0) 60 continue; 61 ans.num[ans.len++] = now / number; 62 now %= number; 63 } 64 for (int i = 0; i < ans.len / 2; ++i) 65 std::swap (ans.num[i], ans.num[ans.len - i - 1]); 66 return ans; 67 } 68 void Give(High *n1, int number) 69 { 70 memset (n1 -> num, 0, sizeof n1->num); 71 n1 -> len = 0; 72 do 73 { 74 n1 -> num[(n1 -> len)++] = number % 10; 75 number /= 10; 76 } 77 while (number != 0); 78 } 79 void Print(High n1) 80 { 81 for (int i = n1.len - 1; i > -1; --i) 82 printf("%d", n1.num[i]); 83 printf("\n"); 84 } 85 void Init() 86 { 87 scanf("%d", &n); 88 for (int i = 0; i <= n; ++i) 89 scanf("%d %d", &p[i].a, &p[i].b); 90 for (int i = 1, j; i < n; ++i) 91 for (j = i + 1; j <= n; ++j) 92 if (!(p[i] < p[j])) 93 std::swap (p[i], p[j]); 94 } 95 int main() 96 { 97 Init(); 98 High s, maxx; 99 Give(&s,p[0].a); 100 Give(&maxx,0); 101 for (int i = 1; i <= n; ++i) 102 { 103 if (s / p[i].b > maxx) 104 maxx = s / p[i].b; 105 s = s * p[i].a; 106 } 107 Print(maxx); 108 return 0; 109 }
Day1T3开车旅行
题目:http://wikioi.com/problem/1199/
对每个i点维护nextA[i], nextB[i]表示i往后A的话去哪里, B的话去哪里. 这个可以用链表来计算, 我们把所有数从小到大排序, 然后串成一个链表. 从1到n每次找Hi在链表里的前后4个判断一下, 然后把Hi从链表里删掉. 然后这样我们再用nextAB[i]表示i往后A走一次B走一次到哪里. 那么可以发现i->nextAB[i]形成了一颗树. 之后可以用树的算法做. 不过最简单的还是预处理next[i][j]表示i往后A和B都走了2^j次到哪里. 然后从大到小判2的每个次幂.
写的我太难受了, 连平时喜欢纠结的格式都没纠结成.
1 #include <cmath> 2 #include <cstdio> 3 #include <cstdlib> 4 #include <iostream> 5 #include <algorithm> 6 #include <cstring> 7 #include <set> 8 using namespace std; 9 #define N 101000 10 #define L 14 11 #define INF 0x3f3f3f3f 12 const double EPS = 1e-8; 13 struct City 14 { 15 int h, id; 16 inline City(): h(0), id(0) { 17 } 18 inline City(int h, int id): h(h), id(id) { 19 } 20 inline bool operator ==(const City &p) const { 21 return (p.id == id); 22 } 23 }nexB[N], nexA[N]; 24 struct Dist 25 { 26 int a, b, dis, id; 27 inline Dist(): a(0), b(0), dis(INF), id(0) { 28 } 29 inline Dist(int a, int b, int dis, int id): a(a), b(b), dis(dis), id(id) { 30 } 31 inline Dist operator +(const Dist &p) const { 32 return Dist(a + p.a, b + p.b, dis + p.dis, p.id); 33 } 34 }f[N][L], c; 35 inline bool cmp1(const City &a, const City &b) {return a.h < b.h;} 36 inline bool cmp2(const City &a, const City &b) {return a.h > b.h;} 37 bool (*cp1)(const City &, const City &) = cmp1, (*cp2)(const City &, const City &) = cmp2; 38 set <City, bool(*)(const City &, const City &)> lr(cp1), hr(cp2); 39 int n, m, h[N]; 40 inline void Update(int &dis, int dis1, City &CC, set <City>::iterator iter) 41 { 42 if ((dis > dis1) || (dis == dis1 && CC.h > (iter -> h))) dis = dis1, CC = *(iter); 43 } 44 inline City nex_B(const City &now, set<City>::iterator liter, set<City>::iterator hiter) 45 { 46 City CC; int dis = INF; 47 int co = 1; 48 for (set<City>::iterator iter = liter; co <= 1 && iter != lr.end(); iter ++, co ++) Update(dis, abs(now.h - (iter -> h)), CC, iter); 49 co = 1; 50 for (set<City>::iterator iter = hiter; co <= 1 && iter != hr.end(); iter ++, co ++) Update(dis, abs(now.h - (iter -> h)), CC, iter); 51 if (dis == INF) return City(); 52 return CC; 53 } 54 inline City nex_A(const City &now, set<City>::iterator liter, set<City>::iterator hiter) 55 { 56 City fir = nex_B(now, liter, hiter); 57 City CC; int dis = INF; 58 int co = 1; 59 for (set<City>::iterator iter = liter; co <= 2 && iter != lr.end(); iter ++, co ++) if (!((*iter) == fir)) Update(dis, abs(now.h - (iter -> h)), CC, iter); 60 co = 1; 61 for (set<City>::iterator iter = hiter; co <= 2 && iter != hr.end(); iter ++, co ++) if (!((*iter) == fir)) Update(dis, abs(now.h - (iter -> h)), CC, iter); 62 if (dis == INF) return City(); 63 return CC; 64 } 65 void init() 66 { 67 scanf("%d", &n); 68 for (int i = 1; i <= n; i ++) scanf("%d", &h[i]); 69 for (int i = n; i >= 1; i --) { 70 lr.insert(City(h[i], i)), hr.insert(City(h[i], i)); 71 set<City>::iterator liter = ++ lr.lower_bound(City(h[i], i)), hiter = ++ hr.lower_bound(City(h[i], i)); 72 City j = nex_A(City(h[i], i), liter, hiter); nexA[i] = j; nexB[i] = nex_B(City(h[i], i), liter, hiter); 73 if (j == City()) continue ; 74 int a = abs(h[i] - j.h), hj = j.h, b; j = nexB[j.id]; 75 if (j == City()) continue ; b = abs(hj - j.h); 76 f[i][0] = Dist(a, b, a + b, j.id); 77 for (int j = 1; j < L; j ++) 78 if (f[f[i][j - 1].id][j - 1].dis != INF) f[i][j] = f[i][j - 1] + f[f[i][j - 1].id][j - 1]; 79 } 80 } 81 inline Dist go(int s, int x) 82 { 83 Dist CC = Dist(0, 0, 0, s); 84 for (int i = L - 1; i >= 0; i --) 85 if ((CC + f[CC.id][i]).dis <= x) CC = CC + f[CC.id][i]; 86 City nex = nexA[CC.id]; 87 if ((!(nex == City())) && (CC.dis + abs(h[CC.id] - nex.h) <= x)) CC = CC + Dist(abs(h[CC.id] - nex.h), 0, abs(h[CC.id] - nex.h), nex.id); 88 return CC; 89 } 90 void solve() 91 { 92 double CC = (double) INF; 93 int id = 0, x0, s, x; 94 bool flag = false; 95 scanf("%d", &x0); 96 for (int i = 1; i <= n; i ++) { 97 c = go(i, x0); 98 if (c.b != 0 && ((double) c.a / (double)c.b < CC || (fabs((double) c.a / (double) c.b == CC)) && h[i] > h[id])) CC = (double) c.a / (double) c.b, id = i, flag = true; 99 } 100 if (!flag) cout << hr.begin() -> id << endl; else cout << id << endl; 101 scanf("%d", &m); 102 for (int i = 1; i <= m; i ++) 103 scanf("%d%d", &s, &x), c = go(s, x), printf("%d %d\n", c.a, c.b); 104 } 105 int main() 106 { 107 init(); 108 solve(); 109 return 0; 110 }
Day2T1同余方程
求关于 x 同余方程 ax ≡ 1 (mod b)的最小正整数解.
一句话: 用exgcd或则利用结论a^(phi(b)-1)%b.
1 #include <stdio.h> 2 typedef long long int64; 3 int64 stack_k[8193]; 4 int top = -1; 5 int64 extended_euclidian_algo(int64 x, int64 y) 6 { 7 int64 a = x, b = y, p, q; 8 while (b != 0ll) 9 { 10 stack_k[++top] = (a / b) % y; 11 int64 t = a % b; 12 a = b; 13 b = t; 14 } 15 p = 1ll; 16 q = 0ll; 17 while (top != -1) 18 { 19 int64 t = (p - q * stack_k[top--] % y) % y; 20 if (t < 0) 21 t += y; 22 p = q; 23 q = t; 24 } 25 return p; 26 } 27 int main() 28 { 29 int64 a, b; 30 scanf("%I64d %I64d", &a, &b); 31 scanf("%I64d\n", extended_euclidian_algo(a, b)); 32 return 0; 33 }
Day2T2借教室
题目:http://wikioi.com/problem/1217/
标准解法是:让我们考虑现在有m个操作,我们先把这些操作的端点离散化一下,之后可以注意到,相邻的两个关键点之间,只有最少的哪天是有用的,那么我们可以把天数压到2m级别。然后有m个操作,我们先加入前m/2个,然后用部分和判断一下前m/2个会不会跪,会的话就在前m/2个中递归,不然就在后m/2个中递归。由于我们每次可以压天数。复杂度函数就是F(n)=n+F(n/2)=O(n).
然后我很纠结的写了个二分...
1 #include <math.h> 2 #include <stdio.h> 3 #include <stdlib.h> 4 #include <string.h> 5 #define N 1004000 6 int a[N], sum[N], n, m, d[N]; 7 struct query 8 { 9 int x, y, d; 10 }q[N]; 11 inline int Read() 12 { 13 char ch = getchar(); 14 while (!(ch >= '0' && ch <= '9')) ch = getchar(); 15 int x = 0; 16 while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); 17 return x; 18 } 19 void init() 20 { 21 scanf("%d%d", &n, &m); 22 for (int i = 1; i <= n; i ++) a[i] = Read(); 23 for (int i = 1; i <= m; i ++) q[i].d = Read(), q[i].x = Read(), q[i].y = Read();//scanf("%d%d%d", &q[i].d, &q[i].x, &q[i].y); 24 } 25 bool check(int m) 26 { 27 memset(d, 0, sizeof(d)); 28 for (int i = 1; i <= m; i ++) d[q[i].x] += q[i].d, d[q[i].y + 1] -= q[i].d; 29 for (int i = 1; i <= n; i ++) { 30 sum[i] = sum[i - 1] + d[i]; 31 if (sum[i] > a[i]) return false; 32 } 33 return true; 34 } 35 int find(int l, int r) 36 { 37 int mid = (l + r) >> 1; 38 while (l <= r) { 39 if (check(mid)) l = mid + 1; 40 else r = mid - 1; 41 mid = (l + r) >> 1; 42 } 43 return r; 44 } 45 int main() 46 { 47 init(); 48 int CC = find(0, m); 49 if (CC == m) {puts("0\n");return 0;} 50 printf("%d\n%d\n", -1, CC + 1); 51 return 0; 52 }
Day2T3没时间写, 改天写.