• 使用TensorFlow的卷积神经网络识别手写数字(1)-预处理篇


     

    功能:

      将文件夹下的20*20像素黑白图片,根据重心位置绘制到28*28图片上,然后保存。经过预处理的图片有利于数字的准确识别。参见MNIST对图片的要求。

       

      此处可下载已处理好的图片:

      https://files.cnblogs.com/files/hatemath/20-pixel-numbers.zip

      https://files.cnblogs.com/files/hatemath/28-pixel-numbers.zip

      1 # encoding: utf-8
      2 import os
      3 
      4 
      5 from PIL import Image
      6 import numpy as np
      7 import cv2
      8 import matplotlib.pyplot as plt
      9 import matplotlib.cm as cm
     10 
     11 srcDir = '20-pixel-numbers'
     12 dstDir = '28-pixel-numbers'
     13 
     14 #显示图片
     15 def showImg(image):
     16     plt.imshow(image,cmap=cm.binary)
     17     plt.show()
     18 
     19 #按比例调整图片大小
     20 def resizeImage(image,width=None,height=None,inter=cv2.INTER_AREA):
     21     
     22     #获取图像尺寸
     23     (h,w) = image.shape[:2]
     24     if width is None and height is None:
     25         return image
     26     
     27     #高度算缩放比例
     28 
     29     if(w > h):
     30         newsize = (width,round(h / (w/width)))
     31     else:
     32         newsize = (round(w/ (h/height)), height)
     33 
     34         #print(newsize)
     35     
     36 
     37         
     38     # 缩放图像
     39     newimage = cv2.resize(image, newsize, interpolation=inter)
     40     return newimage
     41 
     42 #创建新的黑色图片 
     43 def createBianryImage(bg=(0,0,0), width=28, height=28):
     44 
     45     channels = 1
     46 
     47     image = np.zeros((width,height,channels),np.uint8)#生成一个空灰度图像
     48     #cv2.rectangle(image,(0,0),(width,height),bg,1, -1)
     49     
     50     return image.reshape(width, height)
     51 
     52 #两个不同大小的图片合并
     53 def mergeImage(bg, fg, x, y):
     54     bgH, bgW = bg.shape[:2]
     55     fgH, fgW = fg.shape[:2]
     56     
     57     for i in range(fgH):
     58         for j in range(fgW):
     59             if(y+i < bgH and x+j < bgW):
     60                 #print('xx', y+i, x+j)
     61                 bg[y+i, x+j] = fg[i,j] # 这里可以处理每个像素点
     62         
     63     return bg
     64 
     65 # 求像素重心。传入二值图像,其中白色点算重量,黑色点为空
     66 def getBarycentre(image):
     67 
     68     h, w = image.shape[:2]
     69     
     70     sumWeightW = 0
     71     sumWeightH = 0
     72 
     73     count = 0
     74     
     75     for i in range(h):
     76         for j in range(w):
     77             if(image[i,j] > 128):
     78                 sumWeightW += j
     79                 sumWeightH += i
     80                 count += 1
     81 
     82     if(count == 0):
     83         count = 1
     84         
     85     print('getBarycentre: ', round(sumWeightW/count), round(sumWeightH/count) )               
     86     return (round(sumWeightW/count), round(sumWeightH/count))
     87 
     88 
     89 
     90 def getFileList(strDir, strType='.png'):
     91     lstSrcFiles = []
     92 
     93     files = os.listdir(strDir)                   
     94     for file in files:
     95         if os.path.splitext(file)[1] == strType:
     96             lstSrcFiles.append(file)
     97 
     98     return lstSrcFiles
     99             
    100     
    101 # 读取指定目录下的图片文件,图片为黑白格式,长、宽的最大值为20像素。
    102 lstSrcFiles = getFileList(srcDir)
    103 print (lstSrcFiles)
    104 
    105 
    106 for file in lstSrcFiles:
    107     binary = cv2.imread(srcDir + '/' + file, cv2.IMREAD_GRAYSCALE)
    108     
    109     # 求像素重心
    110     bcW, bcH = getBarycentre(binary)
    111 
    112     # 叠加到28x28的黑色图片上
    113     xOffset = round(28/2 - bcW)
    114     yOffset = round(28/2 - bcH)    
    115 
    116     print('offset', xOffset, yOffset)
    117     
    118     # 另存为
    119     cv2.imwrite(dstDir + '/' + file,
    120                     mergeImage(createBianryImage(), binary, xOffset, yOffset))
    121                     #binary)
    本文由hATEmATH原创 转载请注明出处:http://www.cnblogs.com/hatemath/
  • 相关阅读:
    Android 存储 SD卡
    Android 存储 内部存储
    Android 存储 SP存储
    go goroutine
    go 接收命令行参数
    go 文件操作 复制和统计字符
    go 文件操作 判断文件是否存在
    換博客了,新地址https://cutepig123.github.io/
    光盘是个好东西
    俺买过的电子产品
  • 原文地址:https://www.cnblogs.com/hatemath/p/8513826.html
Copyright © 2020-2023  润新知