• [LA 3887] Slim Span


    3887 - Slim Span
    Time limit: 3.000 seconds

    Given an undirected weighted graph G <tex2html_verbatim_mark>, you should find one of spanning trees specified as follows.

    The graph G <tex2html_verbatim_mark>is an ordered pair (VE) <tex2html_verbatim_mark>, where V <tex2html_verbatim_mark>is a set of vertices {v1v2,..., vn} <tex2html_verbatim_mark>and E <tex2html_verbatim_mark>is a set of undirected edges {e1e2,..., em} <tex2html_verbatim_mark>. Each edge e $ in$ E <tex2html_verbatim_mark>has its weight w(e) <tex2html_verbatim_mark>.

    A spanning tree T <tex2html_verbatim_mark>is a tree (a connected subgraph without cycles) which connects all the n <tex2html_verbatim_mark>vertices with n - 1 <tex2html_verbatim_mark>edges. The slimness of a spanning tree T <tex2html_verbatim_mark>is defined as the difference between the largest weight and the smallest weight among the n - 1 <tex2html_verbatim_mark>edges of T <tex2html_verbatim_mark>.

    epsfbox{p3887a.eps}<tex2html_verbatim_mark>

    For example, a graph G <tex2html_verbatim_mark>in Figure 5(a) has four vertices {v1v2v3v4} <tex2html_verbatim_mark>and five undirected edges {e1e2,e3e4e5} <tex2html_verbatim_mark>. The weights of the edges are w(e1) = 3 <tex2html_verbatim_mark>, w(e2) = 5 <tex2html_verbatim_mark>, w(e3) = 6 <tex2html_verbatim_mark>, w(e4) = 6 <tex2html_verbatim_mark>, w(e5) = 7 <tex2html_verbatim_mark>as shown in Figure 5(b).

    =6in epsfbox{p3887b.eps}<tex2html_verbatim_mark>

    There are several spanning trees for G <tex2html_verbatim_mark>. Four of them are depicted in Figure 6(a)∼(d). The spanning tree Ta<tex2html_verbatim_mark>in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta <tex2html_verbatim_mark>is 4. The slimnesses of spanning trees Tb <tex2html_verbatim_mark>, Tc <tex2html_verbatim_mark>and Td <tex2html_verbatim_mark>shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td <tex2html_verbatim_mark>in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

    Your job is to write a program that computes the smallest slimness.

    Input 

    The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

    n <tex2html_verbatim_mark>m <tex2html_verbatim_mark>
    a1 <tex2html_verbatim_mark>b1 <tex2html_verbatim_mark>w1 <tex2html_verbatim_mark>
    $ vdots$ <tex2html_verbatim_mark>
    am <tex2html_verbatim_mark>bm <tex2html_verbatim_mark>wm <tex2html_verbatim_mark>

    Every input item in a dataset is a non-negative integer. Items in a line are separated by a space.


    n <tex2html_verbatim_mark>is the number of the vertices and m <tex2html_verbatim_mark>the number of the edges. You can assume 2$ le$n$ le$100 <tex2html_verbatim_mark>and 0$ le$m$ le$n(n - 1)/2<tex2html_verbatim_mark>. ak <tex2html_verbatim_mark>and bk <tex2html_verbatim_mark>(k = 1,..., m) <tex2html_verbatim_mark>are positive integers less than or equal to n <tex2html_verbatim_mark>, which represent the two verticesvak <tex2html_verbatim_mark>and vbk <tex2html_verbatim_mark>connected by the k <tex2html_verbatim_mark>-th edge ek <tex2html_verbatim_mark>. wk <tex2html_verbatim_mark>is a positive integer less than or equal to 10000, which indicates the weight of ek <tex2html_verbatim_mark>. You can assume that the graph G = (VE) <tex2html_verbatim_mark>is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

    Output 

    For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, `-1' should be printed. An output should not contain extra characters.

    Sample Input 

    4 5 
    1 2 3
    1 3 5
    1 4 6
    2 4 6
    3 4 7
    4 6 
    1 2 10 
    1 3 100 
    1 4 90 
    2 3 20 
    2 4 80 
    3 4 40 
    2 1 
    1 2 1
    3 0 
    3 1 
    1 2 1
    3 3 
    1 2 2
    2 3 5 
    1 3 6 
    5 10 
    1 2 110 
    1 3 120 
    1 4 130 
    1 5 120 
    2 3 110 
    2 4 120 
    2 5 130 
    3 4 120 
    3 5 110 
    4 5 120 
    5 10 
    1 2 9384 
    1 3 887 
    1 4 2778 
    1 5 6916 
    2 3 7794 
    2 4 8336 
    2 5 5387 
    3 4 493 
    3 5 6650 
    4 5 1422 
    5 8 
    1 2 1 
    2 3 100 
    3 4 100 
    4 5 100 
    1 5 50 
    2 5 50 
    3 5 50 
    4 1 150 
    0 0

    Sample Output 

    1 
    20 
    0 
    -1 
    -1 
    1 
    0 
    1686 
    50

    枚举最小边,求得MST
    #include <iostream>
    #include <cstring>
    #include <algorithm>
    #include <cstdio>
    using namespace std;
    #define INF 0x3f3f3f3f
    #define N 110
    #define M 100010
    
    struct Edge
    {
        int u,v,w;
        bool operator <(const Edge &t)const
        {
            return w<t.w;
        }
    }edge[M];
    
    int n,m;
    int f[N];
    
    void init()
    {
        for(int i=1;i<=n;i++) f[i]=i;
    }
    int Find(int x)
    {
        if(x!=f[x]) f[x]=Find(f[x]);
        return f[x];
    }
    bool UN(int x,int y)
    {
        x=Find(x);
        y=Find(y);
        if(x==y) return 0;
        f[x]=y;
        return 1;
    }
    int kruskal(int s)
    {
        init();
        int ret;
        for(int i=s;i<=m;i++)
        {
            if(UN(edge[i].u,edge[i].v)) ret=edge[i].w;
        }
        int cnt=0;
        for(int i=1;i<=n;i++) if(f[i]==i) cnt++;
        if(cnt>1) return -1;
        return ret;
    }
    int main()
    {
        int ans;
        while(scanf("%d%d",&n,&m),n||m)
        {
            ans=INF;
            for(int i=1;i<=m;i++) scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].w);
            sort(edge+1,edge+m+1);
            for(int i=1;i<=m;i++)
            {
                int t=kruskal(i);
                if(t==-1) break;
                ans=min(ans,t-edge[i].w);
            }
            if(ans==INF) ans=-1;
            printf("%d
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    spring boot 扫描不到自定义Controller
    SpringBoot+Maven多模块项目(创建、依赖、打包可执行jar包部署测试)完整流程
    spring boot 中使用 jpa以及jpa介绍
    java8 快速实现List转map 、分组、过滤等操作
    Mysql 创建函数出现This function has none of DETERMINISTIC, NO SQL, or READS SQL DATA
    Spring mvc @initBinder 类型转化器的使用
    @RequestMapping 和@ResponseBody 和 @RequestBody和@PathVariable 注解 注解用法
    ssm的自动类型转换器
    如果将get请求转换成post请求
    如何将post请求转换成put和delete请求
  • 原文地址:https://www.cnblogs.com/hate13/p/4566369.html
Copyright © 2020-2023  润新知