• [HUST 1017] Exact cover


    Exact cover

    Time Limit: 15s Memory Limit: 128MB

    Special Judge Submissions: 6012 Solved: 3185
    DESCRIPTION
    There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is a selection of rows such that every column has a 1 in exactly one of the selected rows. Try to find out the selected rows.
    INPUT
    There are multiply test cases. First line: two integers N, M; The following N lines: Every line first comes an integer C(1 <= C <= 100), represents the number of 1s in this row, then comes C integers: the index of the columns whose value is 1 in this row.
    OUTPUT
    First output the number of rows in the selection, then output the index of the selected rows. If there are multiply selections, you should just output any of them. If there are no selection, just output "NO".
    SAMPLE INPUT
    6 7
    3 1 4 7
    2 1 4
    3 4 5 7
    3 3 5 6
    4 2 3 6 7
    2 2 7
    
    SAMPLE OUTPUT
    3 2 4 6
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    using namespace std;
    #define MaxNode 100010
    #define MaxN 1010
    #define MaxM 1010
    
    struct DLX
    {
        int n,m,size;
        int U[MaxNode],D[MaxNode],R[MaxNode],L[MaxNode];
        int Row[MaxNode],Col[MaxNode];
        int H[MaxN],S[MaxM];
        int ansd, ans[MaxN];
    
        void Init(int _n,int _m)
        {
            n=_n;
            m=_m;
            for(int i=0;i<=m;i++)
            {
                S[i]=0;
                U[i]=D[i]=i;
                L[i]=i-1;
                R[i]=i+1;
            }
            R[m]=0;L[0]=m;
            size=m;
            for(int i=1;i<=n;i++)
                H[i]=-1;
        }
        void Link(int r,int c)
        {
            ++S[Col[++size]=c];
            Row[size]=r;
            U[size]=U[c];
            D[U[c]]=size;
            D[size]=c;
            U[c]=size;
            if(H[r]==-1) H[r]=L[size]=R[size]=size;
            else
            {
                L[size]=L[H[r]];
                R[L[H[r]]]=size;
                R[size]=H[r];
                L[H[r]]=size;
            }
        }
        void Remove(int c)
        {
            L[R[c]]=L[c];
            R[L[c]]=R[c];
            for(int i=D[c];i!=c;i=D[i])
            {
                for(int j=R[i];j!=i;j=R[j])
                {
                    U[D[j]]=U[j];
                    D[U[j]]=D[j];
                    S[Col[j]]--;
                }
            }
        }
        void Resume(int c)
        {
            for(int i = U[c];i != c;i = U[i])
            {
                for(int j = L[i];j != i;j = L[j])
                {
                    U[D[j]]=j;
                    D[U[j]]=j;
                    S[Col[j]]++;
                }
            }
            L[R[c]] =c;
            R[L[c]] =c;
        }
        bool Dance(int d)
        {
            if(R[0]==0)
            {
                ansd=d;
                return 1;
            }
            int c=R[0];
            for(int i=R[0];i!=0;i=R[i])
                if(S[i]<S[c]) c=i;
            Remove(c);
            for(int i=D[c];i!=c;i=D[i])
            {
                ans[d]=Row[i];
                for(int j=R[i];j!=i;j=R[j]) Remove(Col[j]);  //移除
                if(Dance(d+1)) return 1;
                for(int j=L[i];j!=i;j=L[j]) Resume(Col[j]);  //回标
            }
            Resume(c);
            return 0;
        }
    }g;
    int main()
    {
        int n,m;
        while(scanf("%d%d",&n,&m)!=EOF)
        {
            g.Init(n,m);
            for(int i=1;i<=n;i++)
            {
                int num,j;
                scanf("%d",&num);
                while(num--)
                {
                    scanf("%d",&j);
                    g.Link(i,j);
                }
            }
            if(!g.Dance(0)) printf("NO
    ");
            else
            {
                printf("%d",g.ansd);
                for(int i=0;i<g.ansd;i++)
                    printf(" %d",g.ans[i]);
                printf("
    ");
            }
        }
        return 0;
    }
    趁着还有梦想、将AC进行到底~~~by 452181625
  • 相关阅读:
    Programming Windows 第五版读书笔记 第三章 窗口和消息
    一个带游标的遍历数据的函数|数据库操作|软件开发
    递归删除一个文件夹下的所有文件c#代码
    杭州市市民卡办理点
    NTLDR is missing 的解决方法
    SQL Server中 将日期格式化.函数 CONVERT
    1.显示网页中的所有图片
    用sql函数获取中文字符串的全拼
    地柜便利一个文件夹下的所有文件|软件开发
    软件是什么
  • 原文地址:https://www.cnblogs.com/hate13/p/4183395.html
Copyright © 2020-2023  润新知