• Two nodes of a BST are swapped, correct the BST


    Two nodes of a BST are swapped, correct the BST[转载]

    Two of the nodes of a Binary Search Tree (BST) are swapped. Fix (or correct) the BST.

    Input Tree:
             10
            /  
           5    8
          / 
         2   20
    
    In the above tree, nodes 20 and 8 must be swapped to fix the tree.  
    Following is the output tree
             10
            /  
           5    20
          / 
         2   8
    

    The inorder traversal of a BST produces a sorted array. So a simple method is to store inorder traversal of the input tree in an auxiliary array. Sort the auxiliary array. Finally, insert the auxiilary array elements back to the BST, keeping the structure of the BST same. Time complexity of this method is O(nLogn) and auxiliary space needed is O(n).

    We can solve this in O(n) time and with a single traversal of the given BST. Since inorder traversal of BST is always a sorted array, the problem can be reduced to a problem where two elements of a sorted array are swapped. There are two cases that we need to handle:

    1. The swapped nodes are not adjacent in the inorder traversal of the BST.

     For example, Nodes 5 and 25 are swapped in {3 5 7 8 10 15 20 25}. 
     The inorder traversal of the given tree is 3 25 7 8 10 15 20 5 
    

    If we observe carefully, during inorder traversal, we find node 7 is smaller than the previous visited node 25. Here save the context of node 25 (previous node). Again, we find that node 5 is smaller than the previous node 20. This time, we save the context of node 5 ( current node ). Finally swap the two node’s values.

    2. The swapped nodes are adjacent in the inorder traversal of BST.

      For example, Nodes 7 and 8 are swapped in {3 5 7 8 10 15 20 25}. 
      The inorder traversal of the given tree is 3 5 8 7 10 15 20 25 

    Unlike case #1, here only one point exists where a node value is smaller than previous node value. e.g. node 7 is smaller than node 8.

    How to Solve? We will maintain three pointers, first, middle and last. When we find the first point where current node value is smaller than previous node value, we update the first with the previous node & middle with the current node. When we find the second point where current node value is smaller than previous node value, we update the last with the current node. In case #2, we will never find the second point. So, last pointer will not be updated. After processing, if the last node value is null, then two swapped nodes of BST are adjacent.

    Following is the implementation of the given code.

      1 // Two nodes in the BST's swapped, correct the BST.
      2 #include <stdio.h>
      3 #include <stdlib.h>
      4  
      5 /* A binary tree node has data, pointer to left child
      6    and a pointer to right child */
      7 struct node
      8 {
      9     int data;
     10     struct node *left, *right;
     11 };
     12  
     13 // A utility function to swap two integers
     14 void swap( int* a, int* b )
     15 {
     16     int t = *a;
     17     *a = *b;
     18     *b = t;
     19 }
     20  
     21 /* Helper function that allocates a new node with the
     22    given data and NULL left and right pointers. */
     23 struct node* newNode(int data)
     24 {
     25     struct node* node = (struct node *)malloc(sizeof(struct node));
     26     node->data = data;
     27     node->left = NULL;
     28     node->right = NULL;
     29     return(node);
     30 }
     31  
     32 // This function does inorder traversal to find out the two swapped nodes.
     33 // It sets three pointers, first, middle and last.  If the swapped nodes are
     34 // adjacent to each other, then first and middle contain the resultant nodes
     35 // Else, first and last contain the resultant nodes
     36 void correctBSTUtil( struct node* root, struct node** first,
     37                      struct node** middle, struct node** last,
     38                      struct node** prev )
     39 {
     40     if( root )
     41     {
     42         // Recur for the left subtree
     43         correctBSTUtil( root->left, first, middle, last, prev );
     44  
     45         // If this node is smaller than the previous node, it's violating
     46         // the BST rule.
     47         if (*prev && root->data < (*prev)->data)
     48         {
     49             // If this is first violation, mark these two nodes as
     50             // 'first' and 'middle'
     51             if ( !*first )
     52             {
     53                 *first = *prev;
     54                 *middle = root;
     55             }
     56  
     57             // If this is second violation, mark this node as last
     58             else
     59                 *last = root;
     60         }
     61  
     62         // Mark this node as previous
     63         *prev = root;
     64  
     65         // Recur for the right subtree
     66         correctBSTUtil( root->right, first, middle, last, prev );
     67     }
     68 }
     69  
     70 // A function to fix a given BST where two nodes are swapped.  This
     71 // function uses correctBSTUtil() to find out two nodes and swaps the
     72 // nodes to fix the BST
     73 void correctBST( struct node* root )
     74 {
     75     // Initialize pointers needed for correctBSTUtil()
     76     struct node *first, *middle, *last, *prev;
     77     first = middle = last = prev = NULL;
     78  
     79     // Set the poiters to find out two nodes
     80     correctBSTUtil( root, &first, &middle, &last, &prev );
     81  
     82     // Fix (or correct) the tree
     83     if( first && last )
     84         swap( &(first->data), &(last->data) );
     85     else if( first && middle ) // Adjacent nodes swapped
     86         swap( &(first->data), &(middle->data) );
     87  
     88     // else nodes have not been swapped, passed tree is really BST.
     89 }
     90  
     91 /* A utility function to print Inoder traversal */
     92 void printInorder(struct node* node)
     93 {
     94     if (node == NULL)
     95         return;
     96     printInorder(node->left);
     97     printf("%d ", node->data);
     98     printInorder(node->right);
     99 }
    100  
    101 /* Driver program to test above functions*/
    102 int main()
    103 {
    104     /*   6
    105         /  
    106        10    2
    107       /    / 
    108      1   3 7  12
    109      10 and 2 are swapped
    110     */
    111  
    112     struct node *root = newNode(6);
    113     root->left        = newNode(10);
    114     root->right       = newNode(2);
    115     root->left->left  = newNode(1);
    116     root->left->right = newNode(3);
    117     root->right->right = newNode(12);
    118     root->right->left = newNode(7);
    119  
    120     printf("Inorder Traversal of the original tree 
    ");
    121     printInorder(root);
    122  
    123     correctBST(root);
    124  
    125     printf("
    Inorder Traversal of the fixed tree 
    ");
    126     printInorder(root);
    127  
    128     return 0;
    129 }
  • 相关阅读:
    开源mvcpager分页控件分页实例
    「YNOI2016」自己的发明
    「SNOI2017」一个简单的询问
    势能分析(splay分析)
    「Ynoi2018」未来日记
    「JOISC 2016 Day 1」棋盘游戏
    「ZJOI2014」璀灿光华
    「ZJOI2019」线段树
    「科技」区间众数
    「ZJOI2017」树状数组
  • 原文地址:https://www.cnblogs.com/harvyxu/p/7795499.html
Copyright © 2020-2023  润新知