• 移动多少盘子才能完成汉诺塔游戏


    题目描述:

    汉诺塔(又称河内塔)问题是印度的一个古老的传说。在一个庙里有三根金刚石棒,第一根上面套着 64 个圆的金片,最大的一个在底下,其余一个比一个小,依次叠上去,庙里的众僧不停地把它们一个个地从这根棒搬到另一根棒上,规定可利用中间的一根棒作为辅助,但每次只能搬一个,而且大的不能放在小的上面。经过运算移动圆片的次数为 18446744073709551615,看来众僧们耗尽毕生精力也不可能完成金片的移动。
    后来,这个传说就演变为汉诺塔游戏,游戏规则如下:
    1)有三根柱子 A、B、C,A 柱上有若干盘子;
    2)每次移动一块盘子,小的只能叠在大的上面;
    3)把所有碟子从 A 柱全部移到 C 柱上;
    4)经过研究发现,汉诺塔的破解很简单,就是按照移动规则向一个方向移动金片;
    5)例如 3 阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C。
    此外,汉诺塔问题也是程序设计中的经典递归问题。

    分析与解答:

    如果柱子标为 ABC,那么要由 A 搬至 C,在只有一个盘子时,就将它直接搬至 C,当有两个盘子时,就将 B 当作辅助柱。如果盘数超过 2 个,那么将第三个以下的盘子遮起来,就很简单了,每次处理两个盘子,也就是:A->B、A->C、B->C 这三个步骤,而被遮住的部分,其实就是进入程序的递归处理。事实上,若有 n 个盘子,则移动完毕所需次数为 2n-1,所以当盘数为 64 时,则所需次数为:264-1=18446744073709551615,如果对这数字没什么概念,那么可以假设每秒钟搬一个盘子,也要约 5850 亿年。
    实现代码如下:

    程序的运行结果为

    function hanoi($n, $x, $y, $z){
        if($n === 1){
            echo "移动片1从{$x}到{$z}
    ";
            return;
        }
    
        hanoi($n-1, $x, $z, $y);
        echo "移动片{$n}从{$x}到{$z}
    ";
        hanoi($n-1, $y, $x, $z);
    
    }
    
    hanoi(3,'A','B','C');
    
  • 相关阅读:
    LINQTOSQL作为底层ORM框架后,我们的数据基类就变成了这个样子
    一個傳統的C2C網站的用戶充值的过程
    ajax跨域获取数据
    C#+HTML+JS生成的树完整代码
    核心Swing组件(六)
    Swing组件集合的事件处理(六)
    Swing组件集合的事件处理(四)
    核心Swing组件(四)
    核心Swing组件(三)
    核心Swing组件(五)
  • 原文地址:https://www.cnblogs.com/hardy-wang/p/12961139.html
Copyright © 2020-2023  润新知