• GT考试(bzoj 1009)


    Description

      阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。
    他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为
    0

    Input

      第一行输入N,M,K.接下来一行输入M位的数。 N<=10^9,M<=20,K<=1000

    Output

      阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果.

    Sample Input

    4 3 100
    111

    Sample Output

    81
    /*
      我们用DP来解决这个问题
      W[i,j]表示准考证的第I位,和不吉利的数匹配到了第J位的方案数,这个状态的表示也可以看成
      当前到第i位了,准考证的后J位是不吉利的数的前J位,的方案数
      那么我们最后的ans=ΣW[n,i]  0<=i<=m-1
      那么我们考虑怎么转移
      假设当前到第I位了,匹配到第J位,也就是W[i,j]的值我们有了,我们可以枚举第I+1位是什么,
      然后通过KMP的NEXT数组可以快速的得到当前枚举的位可以匹配到第几位,假设可以匹配到第P位,
      那么我们W[I+1,P]+=W[I,J],这样就可以转移了
      但是我们看N的数据范围是10^9,所以递推是完不成的,这时候需要观察下规律
      我们发现转移时的P,J和I是没有关系的,也就是不管I是几,W[i,j]固定会加到W[i+1,k]上
      所以我们换一种转移的方式,之前是用W[I,J]更新W[i,P],现在我们可以写成
      W[i,j]=a0*W[i-1,0]+a1*W[i-1,1]+......+a(m-1)*W[i-1,m-1]
      而且ai数组是不变的,那么这个式子就是“常系数线性齐次递推式”,可以用矩阵乘法优化(不大懂为什么)。 
    */
    #include<cstdio>
    #include<iostream>
    #define N 25
    using namespace std;
    int n,m,p,fail[N],a[N][N],ans[N][N],c[N][N];
    char s[N];
    void kmp(){
        fail[1]=0;
        for(int i=2;i<=m;i++){
            int p=fail[i-1];
            while(p&&s[p+1]!=s[i])p=fail[p];
            if(s[p+1]==s[i])fail[i]=p+1;
            else fail[i]=0;
        }
        for(int i=0;i<m;i++)
            for(int j='0';j<='9';j++){
                int p=i;
                while(p&&s[p+1]!=j)p=fail[p];
                if(s[p+1]==j)a[i][p+1]++;
                else a[i][0]++;
            }
    }
    int main(){
        scanf("%d%d%d%s",&n,&m,&p,s+1);
        kmp();
        for(int i=0;i<m;i++)ans[i][i]=1;
        while(n){
            if(n&1){
                for(int i=0;i<m;i++)
                    for(int j=0;j<m;j++)
                        for(int k=0;k<m;k++)
                            c[i][j]=(c[i][j]+a[i][k]*ans[k][j])%p;
                for(int i=0;i<m;i++)
                    for(int j=0;j<m;j++)
                        ans[i][j]=c[i][j],c[i][j]=0;
            }
            for(int i=0;i<m;i++)
                for(int j=0;j<m;j++)
                    for(int k=0;k<m;k++)
                        c[i][j]=(c[i][j]+a[i][k]*a[k][j])%p;
            for(int i=0;i<m;i++)
                for(int j=0;j<m;j++)
                    a[i][j]=c[i][j],c[i][j]=0;
            n>>=1;
        }
        int sum=0;
        for(int i=0;i<m;i++)
            sum=(sum+ans[0][i])%p;
        printf("%d",sum);
        return 0;
    }
  • 相关阅读:
    laravel执行migrate出现1071 字符串类型过长 异常
    Laravel关闭CSRF功能的两种方法
    webstome10破解及汉化
    spring-retry简单demo(附完整代码)
    git提交报错SSL routines:SSL23_GET_SERVER_HELLO:tlsv1 alert protocol version
    tomcat8的session共享实现方案
    idea下载安装指南
    《Maven实战》(许晓斌)导读(读书笔记&第二次读后感)
    spring cloud config搭建说明例子(四)-补充配置文件
    spring cloud config搭建说明例子(三)-添加actuator
  • 原文地址:https://www.cnblogs.com/harden/p/6246093.html
Copyright © 2020-2023  润新知