题目描述 Description
熊大妈的奶牛在小沐沐的熏陶下开始研究信息题目。小沐沐先让奶牛研究了最长上升子序列,再让他们研究了最长公共子序列,现在又让他们要研究最长公共上升子序列了。
小沐沐说,对于两个串A,B,如果它们都包含一段位置不一定连续的数字,且数字是严格递增的,那么称这一段数字是两个串的公共上升子串,而所有的公共上升子串中最长的就是最长公共上升子串了。
奶牛半懂不懂,小沐沐要你来告诉奶牛什么是最长公共上升子串。不过,只要告诉奶牛它的长度就可以了。
输入描述 Input Description
第一行N,表示A,B的长度。
第二行,串A。
第三行,串B。
输出描述 Output Description
输出长度。
样例输入 Sample Input
4
2 2 1 3
2 1 2 3
样例输出 Sample Output
2
数据范围及提示 Data Size & Hint
1<=N<=3000,A,B中的数字不超过maxlongint
/* 首先是n^3的做法,f[i][j]表示以a串的前i个整数与b串的前j个整数且以b[j]为结尾构成的LCIS的长度。转移就很好想了。 */ #include<cstdio> #include<iostream> #define N 3010 using namespace std; int a[N],b[N],f[N][N],n; int main(){ scanf("%d",&n); for(int i=1;i<=n;i++) scanf("%d",&a[i]); for(int i=1;i<=n;i++) scanf("%d",&b[i]); for(int i=1;i<=n;i++) for(int j=1;j<=n;j++){ f[i][j]=f[i-1][j]; if(a[i]==b[j]){ int maxn=0; for(int k=1;k<j;k++){ if(b[k]<b[j])maxn=max(maxn,f[i-1][k]); } f[i][j]=max(f[i][j],maxn+1); } } int ans=0; for(int i=1;i<=n;i++)ans=max(ans,f[n][i]); printf("%d",ans); return 0; }
/* 然后是n^2的做法,考虑优化n^3。我们可以考虑省去第三重循环,因为每次取的都是最大值,所以可以维护一个最大值,可以用一个数组维护。但是题解给出了更好的方法:因为只有b[k]<b[j]时才会更新,而且a[i]=b[j]时才用到,所以考虑b[k]<a[i]时维护一个最大值。 */ #include<cstdio> #include<iostream> #define N 3010 using namespace std; int a[N],b[N],f[N][N],n; int main(){ scanf("%d",&n); for(int i=1;i<=n;i++) scanf("%d",&a[i]); for(int i=1;i<=n;i++) scanf("%d",&b[i]); for(int i=1;i<=n;i++){ int maxn=0; for(int j=1;j<=n;j++){ f[i][j]=f[i-1][j]; if(a[i]>b[j])maxn=max(maxn,f[i-1][j]); if(a[i]==b[j])f[i][j]=maxn+1; } } int ans=0; for(int i=1;i<=n;i++)ans=max(ans,f[n][i]); printf("%d",ans); return 0; }