题目描述 Description
当排队等候喂食时,奶牛喜欢和它们的朋友站得靠近些。FJ有N(2<=N<=1000)头奶牛,编号从1到N,沿一条直线站着等候喂食。奶牛排在队伍中的顺序和它们的编号是相同的。因为奶牛相当苗条,所以可能有两头或者更多奶牛站在同一位置上。即使说,如果我们想象奶牛是站在一条数轴上的话,允许有两头或更多奶牛拥有相同的横坐标。
一些奶牛相互间存有好感,它们希望两者之间的距离不超过一个给定的数L。另一方面,一些奶牛相互间非常反感,它们希望两者间的距离不小于一个给定的数D。给出ML条关于两头奶牛间有好感的描述,再给出MD条关于两头奶牛间存有反感的描述。(1<=ML,MD<=10000,1<=L,D<=1000000)
你的工作是:如果不存在满足要求的方案,输出-1;如果1号奶牛和N号
奶牛间的距离可以任意大,输出-2;否则,计算出在满足所有要求的情况下,1号奶牛和N号奶牛间可能的最大距离。
输入描述 Input Description
Line 1: Three space-separated integers: N, ML, and MD.
Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.
Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.
Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.
Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.
输出描述 Output Description
Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.
样例输入 Sample Input
4 2 1
1 3 10
2 4 20
2 3 3
样例输出 Sample Output
27
* 差分约束 */ #include<cstdio> #include<iostream> #include<queue> #include<cstring> #define N 1010 #define M 20010 using namespace std; int head[N],vis[N],dis[N],ci[N],n,m1,m2,cnt,flag; struct node { int v,t,pre; };node e[M]; void add(int x,int y,int z) { ++cnt; e[cnt].v=y; e[cnt].t=z; e[cnt].pre=head[x]; head[x]=cnt; } void spfa(int s,int t) { memset(dis,0x3f3f3f3f,sizeof(dis)); queue<int> q; q.push(s);vis[s]=1;dis[s]=0;ci[s]=1; while(!q.empty()) { int u=q.front(); q.pop();vis[u]=0; for(int i=head[u];i;i=e[i].pre) if(dis[e[i].v]>dis[u]+e[i].t) { dis[e[i].v]=dis[u]+e[i].t; if(!vis[e[i].v]) { ci[e[i].v]++; vis[e[i].v]=1; q.push(e[i].v); if(ci[e[i].v]==n) { flag=1; return; } } } } } int main() { scanf("%d%d%d",&n,&m1,&m2); for(int i=1;i<=m1;i++) { int x,y,z; scanf("%d%d%d",&x,&y,&z); add(x,y,z); } for(int i=1;i<=m2;i++) { int x,y,z; scanf("%d%d%d",&x,&y,&z); add(y,x,-z); } spfa(1,n); if(flag)printf("-1"); else if(dis[n]<1000000000)printf("%d",dis[n]); else printf("-2"); return 0; }