Poj1141
题目描述:
定义合法的括号序列如下:
1 空序列是一个合法的序列
2 如果S是合法的序列,则(S)和[S]也是合法的序列
3 如果A和B是合法的序列,则AB也是合法的序列
例如:下面的都是合法的括号序列
(), [], (()), ([]), ()[], ()[()]
下面的都是非法的括号序列
(, [, ), )(, ([)], ([(]
给定一个由'(', ')', '[', 和 ']' 组成的序列,找出以该序列为子序列的最短合法序列。
Brackets Sequence
Description
Let us define a regular brackets sequence in the following way:
1. Empty sequence is a regular sequence.
2. If S is a regular sequence, then (S) and [S] are both regular sequences.
3. If A and B are regular sequences, then AB is a regular sequence.
For example, all of the following sequences of characters are regular brackets sequences:
(), [], (()), ([]), ()[], ()[()]
And all of the following character sequences are not:
(, [, ), )(, ([)], ([(]
Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2 ... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n.
Input
The input file contains at most 100 brackets (characters '(', ')', '[' and ']') that are situated on a single line without any other characters among them.
Output
Write to the output file a single line that contains some regular brackets sequence that has the minimal possible length and contains the given sequence as a subsequence.
Sample Input
([(]
Sample Output
()[()]
分析:先用动态规划处理一个f[i][j]数组表示把i-j之间的括号处理成合法序列的最 小步数,处理完成之后,再用深搜把序列打出来 代码: #include<iostream> #include<cstdio> #include<cmath> #include<cstring> #define M 210 using namespace std; char s[M]; int f[M][M]; bool check(char x,char y) { if(x=='('&&y==')') return true; if(x=='['&&y==']') return true; return false; } void work(int l,int r) { if(l>r) return ; if(l==r) { if(s[l]=='('||s[r]==')') printf("()"); if(s[l]=='['||s[r]==']') printf("[]"); return ; } int tot=f[l][r]; if(tot==f[l+1][r-1]&&check(s[l],s[r])) { printf("%c",s[l]); work(l+1,r-1); printf("%c",s[r]); return; } for(int k=l;k<r;k++) if(tot==f[l][k]+f[k+1][r]) { work(l,k);work(k+1,r);return ; } } int main() { freopen("jh.in","r",stdin); scanf("%s",s+1); int n=strlen(s+1); for(int w=1;w<=n;w++)f[w][w]=1; for(int l=1;l<n;l++) for(int i=1;i<=n-l;++i) { int j=l+i; f[i][j]=9999999; if(check(s[i],s[j])) f[i][j]=f[i+1][j-1]; for(int k=i;k<=j-1;k++) if(f[i][k]+f[k+1][j]<f[i][j]) f[i][j]=f[i][k]+f[k+1][j]; } work(1,n); printf(" "); return 0; }