• 作业调度方案(codevs 1156)


    题目描述 Description

    我们现在要利用m台机器加工n个工件,每个工件都有m道工序,每道工序都在不同的指定的机器上完成。每个工件的每道工序都有指定的加工时间。

    每个工件的每个工序称为一个操作,我们用记号j-k表示一个操作,其中j为1到n中的某个数字,为工件号;k为1到m中的某个数字,为工序号,例如2-4表示第2个工件第4道工序的这个操作。在本题中,我们还给定对于各操作的一个安排顺序。

    例如,当n=3,m=2时,“1-1,1-2,2-1,3-1,3-2,2-2”就是一个给定的安排顺序,即先安排第1个工件的第1个工序,再安排第1个工件的第2个工序,然后再安排第2个工件的第1个工序,等等。

    一方面,每个操作的安排都要满足以下的两个约束条件。

    (1) 对同一个工件,每道工序必须在它前面的工序完成后才能开始;

    (2) 同一时刻每一台机器至多只能加工一个工件。

    另一方面,在安排后面的操作时,不能改动前面已安排的操作的工作状态。

    由于同一工件都是按工序的顺序安排的,因此,只按原顺序给出工件号,仍可得到同样的安排顺序,于是,在输入数据中,我们将这个安排顺序简写为“1 1 2 3 3 2”。

    还要注意,“安排顺序”只要求按照给定的顺序安排每个操作。不一定是各机器上的实际操作顺序。在具体实施时,有可能排在后面的某个操作比前面的某个操作先完成。

    例如,取n=3,m=2,已知数据如下:

    <dl><dd> <colgroup><col width="76"/> <col width="77"/> <col width="78"/> </colgroup>

    工件号

    机器号/加工时间

    工序1

    工序2

    1

    1/3

    2/2

    2

    1/2

    2/5

    3

    2/2

    1/4

    </dd></dl>

    则对于安排顺序“1 1 2 3 3 2”,下图中的两个实施方案都是正确的。但所需要的总时间分别是10与12。

     

    当一个操作插入到某台机器的某个空档时(机器上最后的尚未安排操作的部分也可以看作一个空档),可以靠前插入,也可以靠后或居中插入。为了使问题简单一些,我们约定:在保证约束条件(1)(2)的条件下,尽量靠前插入。并且,我们还约定,如果有多个空档可以插入,就在保证约束条件(1)(2)的条件下,插入到最前面的一个空档。于是,在这些约定下,上例中的方案一是正确的,而方案二是不正确的。

    显然,在这些约定下,对于给定的安排顺序,符合该安排顺序的实施方案是唯一的,请你计算出该方案完成全部任务所需的总时间。

    输入描述 Input Description

    第1行为两个正整数,用一个空格隔开:

    m n

    (其中m(<20)表示机器数,n(<20)表示工件数)

    第2行:个用空格隔开的数,为给定的安排顺序。

    接下来的2n行,每行都是用空格隔开的m个正整数,每个数不超过20。

    其中前n行依次表示每个工件的每个工序所使用的机器号,第1个数为第1个工序的机器号,第2个数为第2个工序机器号,等等。

    后n行依次表示每个工件的每个工序的加工时间。

    可以保证,以上各数据都是正确的,不必检验。

    输出描述 Output Description

    只有一个正整数,为最少的加工时间

    样例输入 Sample Input

     2 3

    1 1 2 3 3 2

    1 2

    1 2

    2 1

    3 2

    2 5

    2 4

    样例输出 Sample Output

    10

    数据范围及提示 Data Size & Hint
    如描述
    /*
      模拟就好了 
      a[]储存表示顺序
      dao[i]表示dii个工件执行到的工序
      vis[i][j]表示第i个机器的j时间
      tim[i][j]表示第i个工件的第j个工序的时间
      mac[i][j]表示第i个工件的第j个工序的机器
      lon[i][j]表示第i个工件的第j个工序的完成时刻 
    */ 
    #include<cstdio>
    #include<iostream>
    #define M 2010
    using namespace std;
    int a[M],dao[M],vis[M][M],tim[M][M],mac[M][M],lon[M][M],n,m;
    int main()
    {
        scanf("%d%d",&m,&n);//n个工件,m个工序/机器 
        for(int i=1;i<=n*m;i++)
          scanf("%d",&a[i]);
        for(int i=1;i<=n;i++)
          for(int j=1;j<=m;j++)
            scanf("%d",&mac[i][j]);
        for(int i=1;i<=n;i++)
          for(int j=1;j<=m;j++)
            scanf("%d",&tim[i][j]);
        for(int i=1;i<=n*m;i++)
        {
            int gj=a[i],gx=++dao[gj],jq=mac[gj][gx],ti=tim[gj][gx];
            int p=lon[gj][gx-1]+1;//时间点 
            while(1)
            {
                int flag=0;
                for(int i=p;i<p+ti;i++)
                  if(vis[jq][i])
                  {
                      flag=1;
                      break;
                  }
                if(!flag)
                {
                    for(int i=p;i<p+ti;i++)
                      vis[jq][i]=1;
                    lon[gj][gx]=p+ti-1;
                    break;
                }
                p++;
            }
        }
        int ans=0;
        for(int i=1;i<=n;i++)
          for(int j=1;j<=m;j++)
            ans=max(ans,lon[i][j]);
        printf("%d",ans);
        return 0;
    }
    View Code
  • 相关阅读:
    监视和调整硬件性能
    ASP.NET MVC三个重要的描述对象:ActionDescriptor
    REST in Practice
    软硬件错误的排查之道
    OMCS 多媒体连接系统
    逻辑层 vs 物理层
    深入浅出裸测之道单元测试的单元化
    简单的网络爬虫实现
    WCF返回JSON与传入JSON(普通参数或对象)
    .NET程序员的一个礼物——TypeMonster
  • 原文地址:https://www.cnblogs.com/harden/p/5648906.html
Copyright © 2020-2023  润新知