• 粗浅看 Tomcat系统架构分析


    原文出处: 吴士龙 http://www.importnew.com/21112.html

    Tomcat的结构很复杂,但是Tomcat也非常的模块化,找到了Tomcat最核心的模块,就抓住了Tomcat的七寸

    整体结构

    Tomcat 总体结构图


    从上图中可以看出Tomcat的心脏是两个组件:Connector 和 Container,关于这两个组件将在后面详细介绍。Connector 组件是可以被替换,这样可以提供给服务器设计者更多的选择,因为这个组件是如此重要,不仅跟服务器的设计的本身,而且和不同的应用场景也十分相关,所以一个Container 可以选择对应多个Connector。多个Connector和一个Container 就形成了一个Service,Service 的概念大家都很熟悉了,有了Service 就可以对外提供服务了,但是Service还要一个生存的环境,必须要有人能够给她生命、掌握其生死大权,那就非Server莫属了。所以整个Tomcat的生命周期由Server控制。

    以Service  作为“婚姻”

    我们将 Tomcat 中 Connector、Container 作为一个整体比作一对情 侣的话,Connector主要负责对外交流,可以比作为 Boy,Container 主要处理 Connector 接受的请求,主要是处理内部事务,可以比作为 Girl。那么这个 Service就是连接这对男女的结婚证了。是Service将它们连接在一起,共同组成一个家庭。当然要组成一个家庭还要很多其它的元素。

    说白了,Service 只是在Connector 和 Container外面多包一层,把它们组装在一起,向外面提供服务,一个Service可以设置多个Connector,但是只能有一个 Container 容器。这个 Service 接口的 方法列表如下:

    ①Service接口

    从 Service接口中定义的方法中可以看出,它主要是为了关联Connector和 Container,同时会初始化它下面的其它组件,注意接 口中它并没有规定一定要控制它下面的组件的生命周期。所有组件的 生命周期在一个 Lifecycle 的接口中控制,这里用到了一个重要的设 计模式,关于这个接口将在后面介绍。

    Tomcat 中 Service接口的标准实现类是StandardService它不仅实现了 Service 借口同时还实现了 Lifecycle 接口,这样它就可以控 制它下面的组件的生命周期了。StandardService 类结构图如下:

    ②StandardService的类结构图

    从上图中可以看出除了 Service接口的方法的实现以及控制组件生命周期的 Lifecycle 接口的实现,还有几个方法是用于在事件监听的 方法的实现,不仅是这个 Service 组件,Tomcat 中其它组件也同样 有这几个方法,这也是一个典型的设计模式,将在后面介绍。

    下面看一下 StandardService 中主要的几个方法实现的代码,下面是setContainer和addConnector 方法的源码:

    ③StandardService. SetContainer

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    public void setContainer(Container container) {
     
    Container oldContainer = this.container;
     
    if ((oldContainer != null) && (oldContainer instanceof Engine))
     
    ((Engine) oldContainer).setService(null);
     
    this.container = container;
     
    if ((this.container != null) && (this.container instanceof Engine))
     
    ((Engine)  this.container).setService(this);
     
    if (started && (this.container != null) && (this.container instanceof Lifecycle))
     
    {
     
    try {
     
    ((Lifecycle) this.container).start();
     
    } catch (LifecycleException e) {
     
    ;
     
    }
     
    }
     
    synchronized (connectors) {
     
    for (int i = 0; i < connectors.length; i++)
     
    connectors[i].setContainer(this.container);
     
    }
     
    if (started && (oldContainer != null) && (oldContainer instanceof Lifecycle)) {
     
    try {
     
    ((Lifecycle)  oldContainer).stop();
     
    } catch (LifecycleException e) {
     
    ;
     
    }
     
    }
     
    support.firePropertyChange("container", oldContainer, this.container);
    —————————————————————————————
    }

    这段代码很简单,其实就是先判断当前的这个 Service 有没有已经关 联了 Container,如果已经关联了,那么去掉这个关联关系——oldContainer.setService(null)。如果这个oldContainer 已经被启动 了,结束它的生命周期。然后再替换新的关联、再初始化并开始这个新的 Container 的生命周期。最后将这个过程通知感兴趣的事件监听程序。这里值得注意的地方就是,修改Container 时要将新的 Container关联到每个Connector,还好Container 和 Connector 没有双向关联,不然这个关联关系将会很难维护。

    ④StandardService. addConnector

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    public void addConnector(Connector connector) {
     
    synchronized (connectors) {
     
    connector.setContainer(this.container);
     
    connector.setService(this);
     
    Connector results[] = new Connector[connectors.length + 1];
     
    System.arraycopy(connectors, 0, results, 0, connectors.length);
     
    results[connectors.length] = connector;
     
    connectors = results;
     
    if (initialized) {
     
    try {
     
    connector.initialize();
     
    } catch (LifecycleException e) {
     
    e.printStackTrace(System.err);
     
    }
     
    }
     
    if (started && (connector instanceof Lifecycle)) {
     
    try {
     
    ((Lifecycle) connector).start();
     
    } catch (LifecycleException e) {
     
    ;
     
    }
     
    }
     
    support.firePropertyChange("connector", null, connector);
     
    }
     
    }

    上面是 addConnector 方法,这个方法也很简单,首先是设置关联关 系,然后是初始化工作,开始新的生命周期。这里值得一提的是,注 意 Connector 用的是数组而不是 List集合,这个从性能角度考虑可 以理解,有趣的是这里用了数组但是并没有向我们平常那样,一开始 就分配一个固定大小的数组,它这里的实现机制是:重新创建一个当 前大小的数组对象,然后将原来的数组对象 copy 到新的数组中,这 种方式实现了类似的动态数组的功能,这种实现方式,值得我们以后 拿来借鉴。

    最新的 Tomcat6 中 StandardService也基本没有变化,但是从Tomcat5 开始Service、Server 和容器类都继承了MBeanRegistration接口,Mbeans 的管理更加合理。

    以 Server  为“居”

    前面说一对情侣因为 Service 而成为一对夫妻,有了能够组成一个家 庭的基本条件,但是它们还要有个实体的家,这是它们在社会上生存 之本,有了家它们就可以安心的为人民服务了,一起为社会创造财富。

    Server要完成的任务很简单,就是要能够提供一个接口让其它程序能够访问到这个Service 集合、同时要维护它所包含的所有 Service 的生命周期,包括如何初始化、如何结束服务、如何找到别人要访问的 Service。还有其它的一些次要的任务,如您住在这个地方要向当 地政府去登记啊、可能还有要配合当地公安机关日常的安全检查什么 的。

    Server的类结构图如下:

    ①Server的类结构图

    它的标准实现类 StandardServer 实现了上面这些方法,同时也实现 了Lifecycle、MbeanRegistration 两个接口的所有方法,下面主要看 一下 StandardServer重要的一个方法 addService的实现:

    ②StandardServer.addService

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    public void addService(Service service) {
     
    service.setServer(this);
     
    synchronized (services) {
     
    Service results[] = new Service[services.length + 1];
     
    System.arraycopy(services, 0, results, 0, services.length);
     
    results[services.length] = service;
     
    services = results;
     
    if (initialized) {
     
    try {
     
    service.initialize();
     
    } catch (LifecycleException e) {
     
    e.printStackTrace(System.err);
     
    }
     
    }
     
    if (started && (service instanceof Lifecycle)) {
     
    try {
     
    ((Lifecycle) service).start();
     
    } catch (LifecycleException e) {
     
    ;
     
    }
     
    }
     
    support.firePropertyChange("service", null, service);
     
    }
     
    }

    从上面第一句就知道了 Service和 Server是相互关联的,Server也是和 Service 管理 Connector 一样管理它,也是将 Service 放在 一个数组中,后面部分的代码也是管理这个新加进来的 Service 的生 命周期。Tomcat6 中也是没有什么变化的。

    组件的生命线“Lifecycle”

    前面一直在说 Service 和 Server 管理它下面组件的生命周期,那它 们是如何管理的呢?

    Tomcat 中组件的生命周期是通过Lifecycle 接口来控制的,组件只 要继承这个接口并实现其中的方法就可以统一被拥有它的组件控制 了,这样一层一层的直到一个最高级的组件就可以控制 Tomcat 中 所有组件的生命周期,这个最高的组件就是 Server,而控制Server的是 Startup,也就是您启动和关闭Tomcat。

    下面是 Lifecycle 接口的类结构图:

    ①Lifecycle类结构图

    除了控制生命周期的 Start 和 Stop 方法外还有一个监听机制,在生命周期开始和结束的时候做一些额外的操作。这个机制在其它的框架中也被使用,如在Spring 中。关于这个设计模式会在后面介绍。

    Lifecycle接口的方法的实现都在其它组件中,就像前面中说的,组件的生命周期由包含它的父组件控制,所以它的 Start 方法自然就是调用它下面的组件的 Start 方法,Stop 方法也是一样。如在 Server 中 Start 方法就会调用Service组件的 Start方法,Server 的 Start方法代码如下:

    ②StandardServer.Start

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    public void start() throws LifecycleException {
     
    if (started) {
     
    log.debug(sm.getString("standardServer.start.started"));
     
    return;
     
    }
     
    lifecycle.fireLifecycleEvent(BEFORE_START_EVENT,  null);
     
    lifecycle.fireLifecycleEvent(START_EVENT,  null);
     
    started = true;
     
    synchronized (services) {
     
    for (int i = 0; i < services.length; i++) {
     
    if (services[i] instanceof Lifecycle)
     
    ((Lifecycle) services[i]).start();
     
    }
     
    }
     
    lifecycle.fireLifecycleEvent(AFTER_START_EVENT, null);
     
    }

    监听的代码会包围Service组件的启动过程,就是简单的循环启动所有Service组件的Start方法,但是所有Service必须要实现Lifecycle接口,这样做会更加灵活。

    Server的 Stop 方法代码如下:

    ③StandardServer.Stop

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    public void stop() throws LifecycleException {
     
    if (!started)
     
    return;
     
    lifecycle.fireLifecycleEvent(BEFORE_STOP_EVENT, null);
     
    lifecycle.fireLifecycleEvent(STOP_EVENT,  null);
     
    started = false;
     
    for (int i = 0; i < services.length; i++) {
     
    if (services[i] instanceof Lifecycle)
     
    ((Lifecycle) services[i]).stop();
     
    }
     
    lifecycle.fireLifecycleEvent(AFTER_STOP_EVENT, null);
     
    }

    它所要做的事情也和Start方法差不多。

    Connector组件

    Connector组件是Tomcat中两个核心组件之一,它的主要任务是负责接收浏览器的发过来的tcp连接请求,创建个Request 和处理这个请求并把产生的Request 和 Response对象传给处理这个请求的线程,处理这个请求的线程就是Container 组件要做的事了。

    由于这个过程比较复杂,大体的流程可以用下面的顺序图来解释:

    ①Connector处理一次请求顺序图

    Tomcat5 中默认的 Connector 是 Coyote,这个 Connector 是可以选择替换的。Connector 最重要的功能就是接收连接请求然后分配线 程让 Container 来处理这个请求,所以这必然是多线程的,多线程的处理是 Connector 设计的核心。Tomcat5将这个过程更加细化,它将 Connector划分成 Connector、Processor、Protocol, 另外Coyote也定义自己的Request 和 Response对象。

    下面主要看一下 Tomcat 中如何处理多线程的连接请求,先看一下Connector的主要类图:

    ② Connector的主要类图

    看一下HttpConnector的Start 方法:

    ③HttpConnector.Start

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    public void start() throws LifecycleException {
     
    if (started)
     
    throw new LifecycleException
     
    (sm.getString("httpConnector.alreadyStarted"));
     
    threadName = "HttpConnector[" + port + "]";
     
    lifecycle.fireLifecycleEvent(START_EVENT,  null);
     
    started = true;
     
    threadStart();
     
    while (curProcessors < minProcessors) {
     
    if ((maxProcessors > 0) && (curProcessors >= maxProcessors))
     
    break;
     
    HttpProcessor processor = newProcessor();
     
    recycle(processor);
     
    }
     
    }

    threadStart()执行就会进入等待请求的状态,直到一个新的请求到来才会激活它继续执行,这个激活是在HttpProcessor 的 assign 方法中,这个方法是代码如下 :

    ④ HttpProcessor.assign

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    synchronized void assign(Socket socket) {
     
    while (available) {
     
    try {
     
    wait();
     
    } catch (InterruptedException e) {
     
    —————————————————————————————
    }
     
    }
     
    this.socket = socket;
     
    available = true;
     
    notifyAll();
     
    if ((debug >= 1) && (socket != null))
     
    log(" An incoming request is being assigned");
     
    }

    创建 HttpProcessor 对象是会把 available 设为 false,所以当请求 到来时不会进入 while循环,将请求的socket 赋给当期处理的 socket,并将 available设为true,当 available设为true 是 HttpProcessor的 run方法将被激活,接下去将会处理这次请求。

    Run方法代码如下:

    ⑤HttpProcessor.Run

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    public void run() {
     
    while (!stopped) {
     
    Socket socket = await();
     
    if (socket == null)
     
    continue;
     
    try {
     
    process(socket);
     
    } catch (Throwable t) {
     
    log("process.invoke", t);
     
    }
     
    connector.recycle(this);
     
    }
     
    —————————————————————————————
    synchronized (threadSync) {
     
    threadSync.notifyAll();
     
    }
     
    }

    解析 socket 的过程在 process 方法中,process 方法的代码片段如 下:

    ⑥HttpProcessor.process

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    private void process(Socket socket) {
     
    boolean ok = true;
     
    boolean finishResponse = true;
     
    SocketInputStream input = null;
     
    OutputStream output = null;
     
    try {
     
    input = new SocketInputStream(socket.getInputStream(),connector.getBufferSize());
    } catch (Exception e) {
     
    log("process.create", e);
     
    ok = false;
     
    }
     
    keepAlive = true;
     
    while (!stopped && ok && keepAlive) {
     
    finishResponse = true;
     
    try {
     
    request.setStream(input);
     
    request.setResponse(response);
     
    output = socket.getOutputStream();
     
    response.setStream(output);
     
    response.setRequest(request);
     
    ((HttpServletResponse)  response.getResponse())
     
    —————————————————————————————
    .setHeader("Server", SERVER_INFO);
     
    } catch (Exception e) {
     
    log("process.create", e);
     
    ok = false;
     
    }
     
    try {
     
    if (ok) {
     
    parseConnection(socket);
     
    parseRequest(input, output);
     
    if (!request.getRequest().getProtocol().startsWith("HTTP/0"))
     
    parseHeaders(input);
     
    if (http11) {
     
    ackRequest(output);
     
    if  (connector.isChunkingAllowed())
     
    response.setAllowChunking(true);
     
    }
     
    }
     
    try {
     
    ((HttpServletResponse)  response).setHeader
     
    ("Date",  FastHttpDateFormat.getCurrentDate());
     
    if (ok) {
     
    connector.getContainer().invoke(request, response);
     
    }
     
    }
     
    try {
     
    shutdownInput(input);
     
    socket.close();
     
    } catch (IOException e) {
     
    ;
     
    } catch (Throwable e) {
     
    log("process.invoke", e);
     
    }
     
    socket = null;
     
    }

    当 Connector将 socket 连接封装成 request 和 response 对象后 接下来的事情就交给Container 来处理了。

    Servlet容器“Container”

    Container是容器的父接口,所有子容器都必须实现这个接口,Container容器的设计用的是典型的责任链的设计模式,它有四个子 容器组件构成,分别是:Engine、Host、Context、Wrapper,这四个组件不是平行的,而是父子关系,Engine包含 Host,Host 包含 Context,Context 包含 Wrapper。通常一个 Servlet class 对应一个 Wrapper,如果有多个 Servlet 就可以定义多个 Wrapper,如果有多 个 Wrapper 就要定义一个更高的Container 了,如 Context, Context 通常就是对应下面这个配置:

    ①Server.xml

    1
    2
    3
    4
    5
    6
    7
    8
    9
    <Context
     
    path="/library"
     
    docBase="D:projectslibrarydeploy argetlibrary.war"
     
    reloadable="true"
     
    />

    ②容器的总体设计

    Context 还可以定义在父容器Host中,Host 不是必须的,但是要运行 war 程序,就必须要 Host,因为 war 中必有 web.xml 文件, 这个文件的解析就需要 Host 了,如果要有多个 Host 就要定义一个 top 容器 Engine 了。而 Engine 没有父容器了,一个 Engine 代表 一个完整的 Servlet 引擎。

    那么这些容器是如何协同工作的呢?先看一下它们之间的关系图:

     四个容器的关系图

    当 Connector接受到一个连接请求时,将请求交给Container, Container是如何处理这个请求的?这四个组件是怎么分工的,怎么 把请求传给特定的子容器的呢?又是如何将最终的请求交给 Servlet处理。下面是这个过程的时序图:

    ②Engine和Host  处理请求的时序图

    这里看到了 Valve 是不是很熟悉,没错 Valve 的设计在其他框架中 也有用的,同样Pipeline的原理也基本是相似的,它是一个管道,Engine和 Host都会执行这个 Pipeline,您可以在这个管道上增加 任意的 Valve,Tomcat 会挨个执行这些Valve,而且四个组件都会 有自己的一套 Valve 集合。您怎么才能定义自己的Valve 呢?在server.xml 文件中可以添加,如给 Engine 和 Host 增加一个 Valve如下:

    ③Server.xml

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    <Engine defaultHost="localhost" name="Catalina">
     
    <Valve   className="org.apache.catalina.valves.RequestDumperValve"/>
     
    ………
     
    <Host appBase="webapps" autoDeploy="true" name="localhost" unpackWARs="true"
     
    xmlNamespaceAware="false"  xmlValidation="false">
     
    <Valve   className="org.apache.catalina.valves.FastCommonAccessLogValve"
     
    directory="logs" prefix="localhost_access_log." suffix=".txt"
     
    pattern="common" resolveHosts="false"/>
     
    …………
     
    </Host>
     
    </Engine>

    StandardEngineValve和 StandardHostValve是 Engine和 Host的默认的 Valve,它们是最后一个Valve 负责将请求传给它们的子 容器,以继续往下执行。

    前面是 Engine和 Host容器的请求过程,下面看Context 和Wrapper 容器时如何处理请求的。下面是处理请求的时序图:

    ④Context 和wrapper  的处理请求时序图

    从 Tomcat5 开始,子容器的路由放在了 request 中,request 中保 存了当前请求正在处理的 Host、Context 和 wrapper。

    ③Engine 容器

    Engine容器比较简单,它只定义了一些基本的关联关系,接口类图如下:

    ①Engine 接口的类结构

    它的标准实现类是StandardEngine,这个类注意一点就是 Engine没有父容器了,如果调用 setParent 方法时将会报错。添加子容器也 只能是 Host 类型的,代码如下:

    ②StandardEngine. addChild

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    public void addChild(Container child) {
     
    if (!(child instanceof Host))
     
    throw new IllegalArgumentException
     
    (sm.getString("standardEngine.notHost"));
     
    super.addChild(child);
     
    }
     
    public void setParent(Container container) {
     
    throw new IllegalArgumentException
     
    (sm.getString("standardEngine.notParent"));
     
    }

    它的初始化方法也就是初始化和它相关联的组件,以及一些事件的监听。

    ④Host容器

    Host是 Engine 的字容器,一个Host在 Engine中代表一个虚拟主机,这个虚拟主机的作用就是运行多个应用,它负责安装和展开这些应用,并且标识这个应用以便能够区分它们。它的子容器通常是Context,它除了关联子容器外,还有就是保存一个主机应该有的信 息。

    ①Host 相关的类图

    从上图中可以看出除了所有容器都继承的ContainerBase外, StandardHost还实现了Deployer 接口,上图清楚的列出了这个接口的主要方法,这些方法都是安装、展开、启动和结束每个web application。

    Deployer 接口的实现是 StandardHostDeployer,这个类实现了的最要的几个方法,Host可以调用这些方法完成应用的部署等。

    ⑤Context容器

    Context 代表 Servlet 的 Context,它具备了 Servlet 运行的基本环 境,理论上只要有Context 就能运行Servlet 了。简单的 Tomcat可以没有 Engine 和 Host。

    Context 最重要的功能就是管理它里面的Servlet实例,Servlet 实 例在 Context 中是以Wrapper 出现的,还有一点就是 Context 如 何才能找到正确的Servlet 来执行它呢?Tomcat5以前是通过一 个 Mapper 类来管理的,Tomcat5 以后这个功能被移到了request 中,在前面的时序图中就可以发现获取子容器都是通过request 来分配的。

    Context 准备 Servlet 的运行环境是在 Start 方法开始的,这个方法 的代码片段如下:

    ①StandardContext.start

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    public synchronized void start() throws LifecycleException {
     
    ………
     
    if( !initialized ) {
     
    try {
     
    init();
     
    } catch( Exception ex ) {
     
    throw new LifecycleException("Error initializaing ", ex);
     
    }
     
    }
     
    ………
     
    lifecycle.fireLifecycleEvent(BEFORE_START_EVENT,   null);
     
    setAvailable(false);
     
    setConfigured(false);
     
    boolean ok = true;
     
    File configBase = getConfigBase();
     
    if (configBase != null) {
     
    if (getConfigFile() == null) {
     
    File file = new File(configBase, getDefaultConfigFile());
     
    setConfigFile(file.getPath());
     
    try {
     
    File appBaseFile = new File(getAppBase());
     
    if (!appBaseFile.isAbsolute()) {
     
    appBaseFile = new File(engineBase(), getAppBase());
     
    }
     
    String appBase = appBaseFile.getCanonicalPath();
     
    String basePath =
     
    (new  File(getBasePath())).getCanonicalPath();
     
    if (!basePath.startsWith(appBase)) {
     
    Server server = ServerFactory.getServer();
     
    ((StandardServer)  server).storeContext(this);
     
    }
     
    } catch (Exception e) {
     
    log.warn("Error storing config file", e);
     
    }
     
    } else {
     
    try {
     
    String canConfigFile =  (new File(getConfigFile())).getCanonicalPath();
    if (!canConfigFile.startsWith (configBase.getCanonicalPath())) {
     
    File file = new File(configBase, getDefaultConfigFile());
     
    if (copy(new File(canConfigFile), file)) {
     
    —————————————————————————————
    setConfigFile(file.getPath());
     
    }
     
    }
     
    } catch (Exception e) {
     
    log.warn("Error setting config file", e);
     
    }
     
    }
     
    }
    ………
     
    Container children[] = findChildren();
     
    for (int i = 0; i < children.length; i++) {
     
    if (children[i] instanceof Lifecycle)
     
    ((Lifecycle)  children[i]).start();
     
    }
     
    if (pipeline instanceof Lifecycle)
     
    ((Lifecycle) pipeline).start();
     
    ………
     
    }

    它主要是设置各种资源属性和管理组件,还有非常重要的就是启动子容器和 Pipeline。

    我们知道 Context 的配置文件中有个 reloadable 属性,如下面配置:

    ②Server.xml

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    <Context
     
    path="/library"
     
    —————————————————————————————
    docBase="D:projectslibrarydeploy argetlibrary.war"
     
    reloadable="true"
     
    />

    当这个 reloadable 设为 true 时,war被修改后 Tomcat 会自动的重新加载这个应用。如何做到这点的呢? 这个功能是在StandardContext的 backgroundProcess 方法中实现的,这个方法的代码如下:

    ③StandardContext. backgroundProcess

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    public void backgroundProcess() {
     
    if (!started) return;
     
    count = (count + 1) % managerChecksFrequency;
     
    if ((getManager() != null) && (count == 0)) {
     
    try {
     
    getManager().backgroundProcess();
     
    } catch ( Exception x ) {
     
    log.warn("Unable to perform background process on manager",x);
     
    }
     
    }
     
    if (getLoader() != null) {
     
    if (reloadable && (getLoader().modified())) {
     
    try {
     
    Thread.currentThread().setContextClassLoader
     
    (StandardContext.class.getClassLoader());
     
    reload();
     
    } finally {
     
    if (getLoader() != null) {
     
    Thread.currentThread().setContextClassLoader
     
    (getLoader().getClassLoader());
     
    }
     
    }
     
    }
     
    if (getLoader() instanceof WebappLoader) {
     
    ((WebappLoader)  getLoader()).closeJARs(false);
     
    }
     
    }
     
    }

    它会调用 reload 方法,而 reload方法会先调用 stop方法然后再调用 Start 方法,完成Context 的一次重新加载。可以看出执行reload方法的条件是reloadable 为 true 和应用被修改,那么这个backgroundProcess 方法是怎么被调用的呢?

    这个方法是在 ContainerBase 类中定义的内部类ContainerBackgroundProcessor被周期调用的,这个类是运行在一个后台线程中,它会周期的执行 run 方法,它的 run 方法会周期调 用所有容器的 backgroundProcess 方法,因为所有容器都会继承ContainerBase类,所以所有容器都能够在backgroundProcess 方 法中定义周期执行的事件。

    ⑥Wrapper容器

    Wrapper 代表一个Servlet,它负责管理一个 Servlet,包括的 Servlet的装载、初始化、执行以及资源回收。Wrapper是最底层的 容器,它没有子容器了,所以调用它的addChild 将会报错。

    Wrapper 的实现类是 StandardWrapper,StandardWrapper 还实现 了拥有一个 Servlet初始化信息的ServletConfig,由此看出 StandardWrapper 将直接和Servlet的各种信息打交道。

    下面看一下非常重要的一个方法loadServlet,代码片段如下:

    ①StandardWrapper.loadServlet

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    public synchronized Servlet loadServlet() throws ServletException {
     
    ………
     
    Servlet servlet;
     
    try {
     
    ………
     
    ClassLoader classLoader = loader.getClassLoader();
     
    ………
     
    Class classClass = null;
     
    ………
     
    servlet = (Servlet) classClass.newInstance();
     
    if ((servlet instanceof ContainerServlet) &&
     
    (isContainerProvidedServlet(actualClass)  ||
     
    ((Context)getParent()).getPrivileged() )) {
     
    ((ContainerServlet)  servlet).setWrapper(this);
     
    }
     
    classLoadTime=(int) (System.currentTimeMillis() -t1);
     
    try {
     
    instanceSupport.fireInstanceEvent(InstanceEvent.BEFORE_INIT_EVENT,servlet);
     
    if( System.getSecurityManager() != null) {
     
    Class[] classType = new Class[]{ServletConfig.class};
     
    Object[] args = new Object[]{((ServletConfig)facade)};
     
    SecurityUtil.doAsPrivilege("init",servlet,classType,args);
     
    } else {
     
    servlet.init(facade);
     
    }
     
    if ((loadOnStartup >= 0) && (jspFile != null)) {
     
    ………
     
    if( System.getSecurityManager() != null) {
     
    Class[] classType = new Class[]{ServletRequest.class,
     
    ServletResponse.class};
     
    Object[] args = new Object[]{req, res};
     
    SecurityUtil.doAsPrivilege("service",servlet,classType,args);
     
    } else {
     
    servlet.service(req, res);
     
    }
     
    }
     
    instanceSupport.fireInstanceEvent(InstanceEvent.AFTER_INIT_EVENT,servlet);
     
    ………
     
    return servlet;
     
    }

    它基本上描述了对Servlet 的操作,当装载了Servlet后就会调用Servlet的 init方法,同时会传一个StandardWrapperFacade对象给Servlet,这个对象包装了StandardWrapper,ServletConfig 与它们的关系图如下:

    ②ServletConf 与StandardWrapperFacade、StandardWrapper的关系

    Servlet可以获得的信息都在StandardWrapperFacade封装,这些信息又是在StandardWrapper 对象中拿到的。所以 Servlet 可以通 过 ServletConfig 拿到有限的容器的信息。

    当 Servlet 被初始化完成后,就等着 StandardWrapperValve 去调用 它的 service 方法了,调用 service 方法之前要调用 Servlet 所有的 filter。

    Tomcat中其它组件

    Tomcat 还有其它重要的组件,如安全组件security、logger 日 志组件、session、mbeans、naming 等其它组件。这些组件共同为Connector和 Container 提供必要的服务。

    业务思想

    关于Tomcat服务器的了解,算是很长时间的了解了,很好用。本博文中关于Tomcat系统架构的学习和总结,算是个人的理解,写一写总结总感觉很有必要,收获颇多。多加使用,方感颇深。大家有什么好的理解,欢迎交流!

  • 相关阅读:
    jquery实现动态五角星评分
    jquery实现动态五角星评分
    三个水桶(看了三遍,想了五遍!)
    三个水桶(看了三遍,想了五遍!)
    三个水桶(看了三遍,想了五遍!)
    复制一个5G文件只需要两秒,全网最牛方法!
    复制一个5G文件只需要两秒,全网最牛方法!
    Symmetric Multiprocessor Organization
    smaller programs should improve performance RISC(精简指令集计算机)和CISC(复杂指令集计算机)是当前CPU的两种架构 区别示例
    mysqli_multi_query($link, $sql_w);
  • 原文地址:https://www.cnblogs.com/harbin1900/p/10504534.html
Copyright © 2020-2023  润新知