• 【CV项目调试】darknet源码中CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT问题


    前言

    环境

    ubuntu20.04

    NVIDIA:RTX3080TI

    error

    ./src/convolutional_layer.c:153:13: error: ‘CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT’ undeclared (first use in this function)
      153 |             CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,

    原因

    cudnn8.x里是没有CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT这个宏定义的,而CUDA11.x又不能配套使用cudnn7.x,但是RTX30序列的GPU又必须使用CUDA11.x才能正常跑,感觉进了死胡同。后来找了比较久搜到NVIDIA给出了一个针对cudnn8的解决方案代码,就是修改出错的文件src/convolutional_layer.c的代码,增加针对CUDNN_MAJOR>=8的处理。

    src/convolutional_layer.c
    #include "convolutional_layer.h"
    #include "utils.h"
    #include "batchnorm_layer.h"
    #include "im2col.h"
    #include "col2im.h"
    #include "blas.h"
    #include "gemm.h"
    #include <stdio.h>
    #include <time.h>
    
    #define PRINT_CUDNN_ALGO 0
    #define MEMORY_LIMIT 2000000000
    
    #ifdef AI2
    #include "xnor_layer.h"
    #endif
    
    void swap_binary(convolutional_layer *l)
    {
        float *swap = l->weights;
        l->weights = l->binary_weights;
        l->binary_weights = swap;
    
    #ifdef GPU
        swap = l->weights_gpu;
        l->weights_gpu = l->binary_weights_gpu;
        l->binary_weights_gpu = swap;
    #endif
    }
    
    void binarize_weights(float *weights, int n, int size, float *binary)
    {
        int i, f;
        for(f = 0; f < n; ++f){
            float mean = 0;
            for(i = 0; i < size; ++i){
                mean += fabs(weights[f*size + i]);
            }
            mean = mean / size;
            for(i = 0; i < size; ++i){
                binary[f*size + i] = (weights[f*size + i] > 0) ? mean : -mean;
            }
        }
    }
    
    void binarize_cpu(float *input, int n, float *binary)
    {
        int i;
        for(i = 0; i < n; ++i){
            binary[i] = (input[i] > 0) ? 1 : -1;
        }
    }
    
    void binarize_input(float *input, int n, int size, float *binary)
    {
        int i, s;
        for(s = 0; s < size; ++s){
            float mean = 0;
            for(i = 0; i < n; ++i){
                mean += fabs(input[i*size + s]);
            }
            mean = mean / n;
            for(i = 0; i < n; ++i){
                binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean;
            }
        }
    }
    
    int convolutional_out_height(convolutional_layer l)
    {
        return (l.h + 2*l.pad - l.size) / l.stride + 1;
    }
    
    int convolutional_out_width(convolutional_layer l)
    {
        return (l.w + 2*l.pad - l.size) / l.stride + 1;
    }
    
    image get_convolutional_image(convolutional_layer l)
    {
        return float_to_image(l.out_w,l.out_h,l.out_c,l.output);
    }
    
    image get_convolutional_delta(convolutional_layer l)
    {
        return float_to_image(l.out_w,l.out_h,l.out_c,l.delta);
    }
    
    static size_t get_workspace_size(layer l){
    #ifdef CUDNN
        if(gpu_index >= 0){
            size_t most = 0;
            size_t s = 0;
            cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(),
                    l.srcTensorDesc,
                    l.weightDesc,
                    l.convDesc,
                    l.dstTensorDesc,
                    l.fw_algo,
                    &s);
            if (s > most) most = s;
            cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(),
                    l.srcTensorDesc,
                    l.ddstTensorDesc,
                    l.convDesc,
                    l.dweightDesc,
                    l.bf_algo,
                    &s);
            if (s > most) most = s;
            cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(),
                    l.weightDesc,
                    l.ddstTensorDesc,
                    l.convDesc,
                    l.dsrcTensorDesc,
                    l.bd_algo,
                    &s);
            if (s > most) most = s;
            return most;
        }
    #endif
        return (size_t)l.out_h*l.out_w*l.size*l.size*l.c/l.groups*sizeof(float);
    }
    
    #ifdef GPU
    #ifdef CUDNN
    void cudnn_convolutional_setup(layer *l)
    {
        cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w); 
        cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w); 
    
        cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w); 
        cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w); 
        cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1); 
    
        cudnnSetFilter4dDescriptor(l->dweightDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c/l->groups, l->size, l->size); 
        cudnnSetFilter4dDescriptor(l->weightDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c/l->groups, l->size, l->size); 
        #if CUDNN_MAJOR >= 6
        cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT);
        #else
        cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION);
        #endif
    
        #if CUDNN_MAJOR >= 7
        cudnnSetConvolutionGroupCount(l->convDesc, l->groups);
        #else
        if(l->groups > 1){
            error("CUDNN < 7 doesn't support groups, please upgrade!");
        }
        #endif
        #if CUDNN_MAJOR >= 8
        int returnedAlgoCount;
        cudnnConvolutionFwdAlgoPerf_t       fw_results[2 * CUDNN_CONVOLUTION_FWD_ALGO_COUNT];
        cudnnConvolutionBwdDataAlgoPerf_t   bd_results[2 * CUDNN_CONVOLUTION_BWD_DATA_ALGO_COUNT];
        cudnnConvolutionBwdFilterAlgoPerf_t bf_results[2 * CUDNN_CONVOLUTION_BWD_FILTER_ALGO_COUNT];
    
        cudnnFindConvolutionForwardAlgorithm(cudnn_handle(),
                l->srcTensorDesc,
                l->weightDesc,
                l->convDesc,
                l->dstTensorDesc,
                CUDNN_CONVOLUTION_FWD_ALGO_COUNT,
                &returnedAlgoCount,
            fw_results);
        for(int algoIndex = 0; algoIndex < returnedAlgoCount; ++algoIndex){
            #if PRINT_CUDNN_ALGO > 0
            printf("^^^^ %s for Algo %d: %f time requiring %llu memory\n",
                   cudnnGetErrorString(fw_results[algoIndex].status),
                   fw_results[algoIndex].algo, fw_results[algoIndex].time,
                   (unsigned long long)fw_results[algoIndex].memory);
            #endif
            if( fw_results[algoIndex].memory < MEMORY_LIMIT ){
                l->fw_algo = fw_results[algoIndex].algo;
                break;
        }
        }
    
        cudnnFindConvolutionBackwardDataAlgorithm(cudnn_handle(),
                l->weightDesc,
                l->ddstTensorDesc,
                l->convDesc,
                l->dsrcTensorDesc,
                CUDNN_CONVOLUTION_BWD_DATA_ALGO_COUNT,
                &returnedAlgoCount,
                bd_results);
        for(int algoIndex = 0; algoIndex < returnedAlgoCount; ++algoIndex){
            #if PRINT_CUDNN_ALGO > 0
            printf("^^^^ %s for Algo %d: %f time requiring %llu memory\n",
                   cudnnGetErrorString(bd_results[algoIndex].status),
                   bd_results[algoIndex].algo, bd_results[algoIndex].time,
                   (unsigned long long)bd_results[algoIndex].memory);
            #endif
            if( bd_results[algoIndex].memory < MEMORY_LIMIT ){
                l->bd_algo = bd_results[algoIndex].algo;
                break;
            }
        }
    
        cudnnFindConvolutionBackwardFilterAlgorithm(cudnn_handle(),
                l->srcTensorDesc,
                l->ddstTensorDesc,
                l->convDesc,
                l->dweightDesc,
                CUDNN_CONVOLUTION_BWD_FILTER_ALGO_COUNT,
                &returnedAlgoCount,
                bf_results);
        for(int algoIndex = 0; algoIndex < returnedAlgoCount; ++algoIndex){
            #if PRINT_CUDNN_ALGO > 0
            printf("^^^^ %s for Algo %d: %f time requiring %llu memory\n",
                   cudnnGetErrorString(bf_results[algoIndex].status),
                   bf_results[algoIndex].algo, bf_results[algoIndex].time,
                   (unsigned long long)bf_results[algoIndex].memory);
            #endif
            if( bf_results[algoIndex].memory < MEMORY_LIMIT ){
                l->bf_algo = bf_results[algoIndex].algo;
                break;
            }
        }
    
        #else
    
        cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
                l->srcTensorDesc,
                l->weightDesc,
                l->convDesc,
                l->dstTensorDesc,
                CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
                2000000000,
                &l->fw_algo);
        cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(),
                l->weightDesc,
                l->ddstTensorDesc,
                l->convDesc,
                l->dsrcTensorDesc,
                CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
                2000000000,
                &l->bd_algo);
        cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(),
                l->srcTensorDesc,
                l->ddstTensorDesc,
                l->convDesc,
                l->dweightDesc,
                CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
                2000000000,
                &l->bf_algo);
        #endif
    }
    #endif
    #endif
    
    convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int groups, int size, int stride, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam)
    {
        int i;
        convolutional_layer l = {0};
        l.type = CONVOLUTIONAL;
    
        l.groups = groups;
        l.h = h;
        l.w = w;
        l.c = c;
        l.n = n;
        l.binary = binary;
        l.xnor = xnor;
        l.batch = batch;
        l.stride = stride;
        l.size = size;
        l.pad = padding;
        l.batch_normalize = batch_normalize;
    
        l.weights = calloc(c/groups*n*size*size, sizeof(float));
        l.weight_updates = calloc(c/groups*n*size*size, sizeof(float));
    
        l.biases = calloc(n, sizeof(float));
        l.bias_updates = calloc(n, sizeof(float));
    
        l.nweights = c/groups*n*size*size;
        l.nbiases = n;
    
        // float scale = 1./sqrt(size*size*c);
        float scale = sqrt(2./(size*size*c/l.groups));
        //printf("convscale %f\n", scale);
        //scale = .02;
        //for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_uniform(-1, 1);
        for(i = 0; i < l.nweights; ++i) l.weights[i] = scale*rand_normal();
        int out_w = convolutional_out_width(l);
        int out_h = convolutional_out_height(l);
        l.out_h = out_h;
        l.out_w = out_w;
        l.out_c = n;
        l.outputs = l.out_h * l.out_w * l.out_c;
        l.inputs = l.w * l.h * l.c;
    
        l.output = calloc(l.batch*l.outputs, sizeof(float));
        l.delta  = calloc(l.batch*l.outputs, sizeof(float));
    
        l.forward = forward_convolutional_layer;
        l.backward = backward_convolutional_layer;
        l.update = update_convolutional_layer;
        if(binary){
            l.binary_weights = calloc(l.nweights, sizeof(float));
            l.cweights = calloc(l.nweights, sizeof(char));
            l.scales = calloc(n, sizeof(float));
        }
        if(xnor){
            l.binary_weights = calloc(l.nweights, sizeof(float));
            l.binary_input = calloc(l.inputs*l.batch, sizeof(float));
        }
    
        if(batch_normalize){
            l.scales = calloc(n, sizeof(float));
            l.scale_updates = calloc(n, sizeof(float));
            for(i = 0; i < n; ++i){
                l.scales[i] = 1;
            }
    
            l.mean = calloc(n, sizeof(float));
            l.variance = calloc(n, sizeof(float));
    
            l.mean_delta = calloc(n, sizeof(float));
            l.variance_delta = calloc(n, sizeof(float));
    
            l.rolling_mean = calloc(n, sizeof(float));
            l.rolling_variance = calloc(n, sizeof(float));
            l.x = calloc(l.batch*l.outputs, sizeof(float));
            l.x_norm = calloc(l.batch*l.outputs, sizeof(float));
        }
        if(adam){
            l.m = calloc(l.nweights, sizeof(float));
            l.v = calloc(l.nweights, sizeof(float));
            l.bias_m = calloc(n, sizeof(float));
            l.scale_m = calloc(n, sizeof(float));
            l.bias_v = calloc(n, sizeof(float));
            l.scale_v = calloc(n, sizeof(float));
        }
    
    #ifdef GPU
        l.forward_gpu = forward_convolutional_layer_gpu;
        l.backward_gpu = backward_convolutional_layer_gpu;
        l.update_gpu = update_convolutional_layer_gpu;
    
        if(gpu_index >= 0){
            if (adam) {
                l.m_gpu = cuda_make_array(l.m, l.nweights);
                l.v_gpu = cuda_make_array(l.v, l.nweights);
                l.bias_m_gpu = cuda_make_array(l.bias_m, n);
                l.bias_v_gpu = cuda_make_array(l.bias_v, n);
                l.scale_m_gpu = cuda_make_array(l.scale_m, n);
                l.scale_v_gpu = cuda_make_array(l.scale_v, n);
            }
    
            l.weights_gpu = cuda_make_array(l.weights, l.nweights);
            l.weight_updates_gpu = cuda_make_array(l.weight_updates, l.nweights);
    
            l.biases_gpu = cuda_make_array(l.biases, n);
            l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
    
            l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
            l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
    
            if(binary){
                l.binary_weights_gpu = cuda_make_array(l.weights, l.nweights);
            }
            if(xnor){
                l.binary_weights_gpu = cuda_make_array(l.weights, l.nweights);
                l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch);
            }
    
            if(batch_normalize){
                l.mean_gpu = cuda_make_array(l.mean, n);
                l.variance_gpu = cuda_make_array(l.variance, n);
    
                l.rolling_mean_gpu = cuda_make_array(l.mean, n);
                l.rolling_variance_gpu = cuda_make_array(l.variance, n);
    
                l.mean_delta_gpu = cuda_make_array(l.mean, n);
                l.variance_delta_gpu = cuda_make_array(l.variance, n);
    
                l.scales_gpu = cuda_make_array(l.scales, n);
                l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);
    
                l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
                l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
            }
    #ifdef CUDNN
            cudnnCreateTensorDescriptor(&l.normTensorDesc);
            cudnnCreateTensorDescriptor(&l.srcTensorDesc);
            cudnnCreateTensorDescriptor(&l.dstTensorDesc);
            cudnnCreateFilterDescriptor(&l.weightDesc);
            cudnnCreateTensorDescriptor(&l.dsrcTensorDesc);
            cudnnCreateTensorDescriptor(&l.ddstTensorDesc);
            cudnnCreateFilterDescriptor(&l.dweightDesc);
            cudnnCreateConvolutionDescriptor(&l.convDesc);
            cudnn_convolutional_setup(&l);
    #endif
        }
    #endif
        l.workspace_size = get_workspace_size(l);
        l.activation = activation;
    
        fprintf(stderr, "conv  %5d %2d x%2d /%2d  %4d x%4d x%4d   ->  %4d x%4d x%4d  %5.3f BFLOPs\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c, (2.0 * l.n * l.size*l.size*l.c/l.groups * l.out_h*l.out_w)/1000000000.);
    
        return l;
    }
    
    void denormalize_convolutional_layer(convolutional_layer l)
    {
        int i, j;
        for(i = 0; i < l.n; ++i){
            float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001);
            for(j = 0; j < l.c/l.groups*l.size*l.size; ++j){
                l.weights[i*l.c/l.groups*l.size*l.size + j] *= scale;
            }
            l.biases[i] -= l.rolling_mean[i] * scale;
            l.scales[i] = 1;
            l.rolling_mean[i] = 0;
            l.rolling_variance[i] = 1;
        }
    }
    
    /*
    void test_convolutional_layer()
    {
        convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1, 0, 0, 0);
        l.batch_normalize = 1;
        float data[] = {1,1,1,1,1,
            1,1,1,1,1,
            1,1,1,1,1,
            1,1,1,1,1,
            1,1,1,1,1,
            2,2,2,2,2,
            2,2,2,2,2,
            2,2,2,2,2,
            2,2,2,2,2,
            2,2,2,2,2,
            3,3,3,3,3,
            3,3,3,3,3,
            3,3,3,3,3,
            3,3,3,3,3,
            3,3,3,3,3};
        //net.input = data;
        //forward_convolutional_layer(l);
    }
    */
    
    void resize_convolutional_layer(convolutional_layer *l, int w, int h)
    {
        l->w = w;
        l->h = h;
        int out_w = convolutional_out_width(*l);
        int out_h = convolutional_out_height(*l);
    
        l->out_w = out_w;
        l->out_h = out_h;
    
        l->outputs = l->out_h * l->out_w * l->out_c;
        l->inputs = l->w * l->h * l->c;
    
        l->output = realloc(l->output, l->batch*l->outputs*sizeof(float));
        l->delta  = realloc(l->delta,  l->batch*l->outputs*sizeof(float));
        if(l->batch_normalize){
            l->x = realloc(l->x, l->batch*l->outputs*sizeof(float));
            l->x_norm  = realloc(l->x_norm, l->batch*l->outputs*sizeof(float));
        }
    
    #ifdef GPU
        cuda_free(l->delta_gpu);
        cuda_free(l->output_gpu);
    
        l->delta_gpu =  cuda_make_array(l->delta,  l->batch*l->outputs);
        l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs);
    
        if(l->batch_normalize){
            cuda_free(l->x_gpu);
            cuda_free(l->x_norm_gpu);
    
            l->x_gpu = cuda_make_array(l->output, l->batch*l->outputs);
            l->x_norm_gpu = cuda_make_array(l->output, l->batch*l->outputs);
        }
    #ifdef CUDNN
        cudnn_convolutional_setup(l);
    #endif
    #endif
        l->workspace_size = get_workspace_size(*l);
    }
    
    void add_bias(float *output, float *biases, int batch, int n, int size)
    {
        int i,j,b;
        for(b = 0; b < batch; ++b){
            for(i = 0; i < n; ++i){
                for(j = 0; j < size; ++j){
                    output[(b*n + i)*size + j] += biases[i];
                }
            }
        }
    }
    
    void scale_bias(float *output, float *scales, int batch, int n, int size)
    {
        int i,j,b;
        for(b = 0; b < batch; ++b){
            for(i = 0; i < n; ++i){
                for(j = 0; j < size; ++j){
                    output[(b*n + i)*size + j] *= scales[i];
                }
            }
        }
    }
    
    void backward_bias(float *bias_updates, float *delta, int batch, int n, int size)
    {
        int i,b;
        for(b = 0; b < batch; ++b){
            for(i = 0; i < n; ++i){
                bias_updates[i] += sum_array(delta+size*(i+b*n), size);
            }
        }
    }
    
    void forward_convolutional_layer(convolutional_layer l, network net)
    {
        int i, j;
    
        fill_cpu(l.outputs*l.batch, 0, l.output, 1);
    
        if(l.xnor){
            binarize_weights(l.weights, l.n, l.c/l.groups*l.size*l.size, l.binary_weights);
            swap_binary(&l);
            binarize_cpu(net.input, l.c*l.h*l.w*l.batch, l.binary_input);
            net.input = l.binary_input;
        }
    
        int m = l.n/l.groups;
        int k = l.size*l.size*l.c/l.groups;
        int n = l.out_w*l.out_h;
        for(i = 0; i < l.batch; ++i){
            for(j = 0; j < l.groups; ++j){
                float *a = l.weights + j*l.nweights/l.groups;
                float *b = net.workspace;
                float *c = l.output + (i*l.groups + j)*n*m;
                float *im =  net.input + (i*l.groups + j)*l.c/l.groups*l.h*l.w;
    
                if (l.size == 1) {
                    b = im;
                } else {
                    im2col_cpu(im, l.c/l.groups, l.h, l.w, l.size, l.stride, l.pad, b);
                }
                gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
            }
        }
    
        if(l.batch_normalize){
            forward_batchnorm_layer(l, net);
        } else {
            add_bias(l.output, l.biases, l.batch, l.n, l.out_h*l.out_w);
        }
    
        activate_array(l.output, l.outputs*l.batch, l.activation);
        if(l.binary || l.xnor) swap_binary(&l);
    }
    
    void backward_convolutional_layer(convolutional_layer l, network net)
    {
        int i, j;
        int m = l.n/l.groups;
        int n = l.size*l.size*l.c/l.groups;
        int k = l.out_w*l.out_h;
    
        gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
    
        if(l.batch_normalize){
            backward_batchnorm_layer(l, net);
        } else {
            backward_bias(l.bias_updates, l.delta, l.batch, l.n, k);
        }
    
        for(i = 0; i < l.batch; ++i){
            for(j = 0; j < l.groups; ++j){
                float *a = l.delta + (i*l.groups + j)*m*k;
                float *b = net.workspace;
                float *c = l.weight_updates + j*l.nweights/l.groups;
    
                float *im  = net.input + (i*l.groups + j)*l.c/l.groups*l.h*l.w;
                float *imd = net.delta + (i*l.groups + j)*l.c/l.groups*l.h*l.w;
    
                if(l.size == 1){
                    b = im;
                } else {
                    im2col_cpu(im, l.c/l.groups, l.h, l.w, 
                            l.size, l.stride, l.pad, b);
                }
    
                gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
    
                if (net.delta) {
                    a = l.weights + j*l.nweights/l.groups;
                    b = l.delta + (i*l.groups + j)*m*k;
                    c = net.workspace;
                    if (l.size == 1) {
                        c = imd;
                    }
    
                    gemm(1,0,n,k,m,1,a,n,b,k,0,c,k);
    
                    if (l.size != 1) {
                        col2im_cpu(net.workspace, l.c/l.groups, l.h, l.w, l.size, l.stride, l.pad, imd);
                    }
                }
            }
        }
    }
    
    void update_convolutional_layer(convolutional_layer l, update_args a)
    {
        float learning_rate = a.learning_rate*l.learning_rate_scale;
        float momentum = a.momentum;
        float decay = a.decay;
        int batch = a.batch;
    
        axpy_cpu(l.n, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
        scal_cpu(l.n, momentum, l.bias_updates, 1);
    
        if(l.scales){
            axpy_cpu(l.n, learning_rate/batch, l.scale_updates, 1, l.scales, 1);
            scal_cpu(l.n, momentum, l.scale_updates, 1);
        }
    
        axpy_cpu(l.nweights, -decay*batch, l.weights, 1, l.weight_updates, 1);
        axpy_cpu(l.nweights, learning_rate/batch, l.weight_updates, 1, l.weights, 1);
        scal_cpu(l.nweights, momentum, l.weight_updates, 1);
    }
    
    
    image get_convolutional_weight(convolutional_layer l, int i)
    {
        int h = l.size;
        int w = l.size;
        int c = l.c/l.groups;
        return float_to_image(w,h,c,l.weights+i*h*w*c);
    }
    
    void rgbgr_weights(convolutional_layer l)
    {
        int i;
        for(i = 0; i < l.n; ++i){
            image im = get_convolutional_weight(l, i);
            if (im.c == 3) {
                rgbgr_image(im);
            }
        }
    }
    
    void rescale_weights(convolutional_layer l, float scale, float trans)
    {
        int i;
        for(i = 0; i < l.n; ++i){
            image im = get_convolutional_weight(l, i);
            if (im.c == 3) {
                scale_image(im, scale);
                float sum = sum_array(im.data, im.w*im.h*im.c);
                l.biases[i] += sum*trans;
            }
        }
    }
    
    image *get_weights(convolutional_layer l)
    {
        image *weights = calloc(l.n, sizeof(image));
        int i;
        for(i = 0; i < l.n; ++i){
            weights[i] = copy_image(get_convolutional_weight(l, i));
            normalize_image(weights[i]);
            /*
               char buff[256];
               sprintf(buff, "filter%d", i);
               save_image(weights[i], buff);
             */
        }
        //error("hey");
        return weights;
    }
    
    image *visualize_convolutional_layer(convolutional_layer l, char *window, image *prev_weights)
    {
        image *single_weights = get_weights(l);
        show_images(single_weights, l.n, window);
    
        image delta = get_convolutional_image(l);
        image dc = collapse_image_layers(delta, 1);
        char buff[256];
        sprintf(buff, "%s: Output", window);
        //show_image(dc, buff);
        //save_image(dc, buff);
        free_image(dc);
        return single_weights;
    }
    View Code

    参考

    1. yolo_with_cudnn

    2. 如何解决pjreddie版darknet不能使用cudnn8编译的问题

  • 相关阅读:
    POJ 1797 Heavy Transportation (Dijkstra算法变形)
    HDU 2883 kebab (最大流)
    HDU 3338 Kakuro Extension (最大流)
    简单的敏捷工具更受敏捷开发团队青睐
    让敏捷工具在敏捷开发中发挥高效作用
    看板工具和Scrum工具选择之惑!
    敏捷开发如何在创业公司实施
    八个垂手可得的Scrum敏捷开发工具
    那些我们常用的scrum工具、敏捷开发工具
    Scrum/Sprint敏捷开发方法.
  • 原文地址:https://www.cnblogs.com/happyamyhope/p/16472930.html
Copyright © 2020-2023  润新知