• 【err】tensorflow.python.framework.errors_impl.OutOfRangeError: RandomShuffleQueue


    problem

    Traceback (most recent call last):
      File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/client/session.py", line 1356, in _do_call
        return fn(*args)
      File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/client/session.py", line 1341, in _run_fn
        options, feed_dict, fetch_list, target_list, run_metadata)
      File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/client/session.py", line 1429, in _call_tf_sessionrun
        run_metadata)
    tensorflow.python.framework.errors_impl.OutOfRangeError: RandomShuffleQueue '_0_shuffle_batch/random_shuffle_queue' is closed and has insufficient elements (requested 10, current size 0)
         [[{{node shuffle_batch}}]]
    
    During handling of the above exception, another exception occurred:
    
    Traceback (most recent call last):
      File "test_TFRecord.py", line 46, in <module>
        print(sess.run(label_batch))
      File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/client/session.py", line 950, in run
        run_metadata_ptr)
      File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/client/session.py", line 1173, in _run
        feed_dict_tensor, options, run_metadata)
      File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/client/session.py", line 1350, in _do_run
        run_metadata)
      File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/client/session.py", line 1370, in _do_call
        raise type(e)(node_def, op, message)
    tensorflow.python.framework.errors_impl.OutOfRangeError: RandomShuffleQueue '_0_shuffle_batch/random_shuffle_queue' is closed and has insufficient elements (requested 10, current size 0)
         [[node shuffle_batch (defined at test_TFRecord.py:34) ]]
    
    Original stack trace for 'shuffle_batch':
      File "test_TFRecord.py", line 34, in <module>
        num_threads=7)
      File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/util/deprecation.py", line 324, in new_func
        return func(*args, **kwargs)
      File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/training/input.py", line 1348, in shuffle_batch
        name=name)
      File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/training/input.py", line 875, in _shuffle_batch
        dequeued = queue.dequeue_many(batch_size, name=name)
      File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/ops/data_flow_ops.py", line 488, in dequeue_many
        self._queue_ref, n=n, component_types=self._dtypes, name=name)
      File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/ops/gen_data_flow_ops.py", line 3862, in queue_dequeue_many_v2
        timeout_ms=timeout_ms, name=name)
      File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/framework/op_def_library.py", line 788, in _apply_op_helper
        op_def=op_def)
      File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/util/deprecation.py", line 507, in new_func
        return func(*args, **kwargs)
      File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/framework/ops.py", line 3616, in create_op
        op_def=op_def)
      File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/framework/ops.py", line 2005, in __init__
        self._traceback = tf_stack.extract_stack()

     code

    # -*- coding: utf-8 -*-
    """
    @author: friedhelm
    
    """
    import tensorflow as tf
    img_size = 12
    filename_queue = tf.train.string_input_producer(["/home/xxx/workspace/test_code/github_test/MTCNN-tensorflow/version_1_0/DATA/12/neg_12_train.tfrecords"],shuffle=True,num_epochs=10)
    
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue) #返回文件名和文件
    
    features = tf.parse_single_example(serialized_example,
                                   features={
                                   'img':tf.FixedLenFeature([],tf.string),
                                   'label':tf.FixedLenFeature([],tf.int64),
                                   'roi':tf.FixedLenFeature([4],tf.float32),
                                   'landmark':tf.FixedLenFeature([10],tf.float32),
                                   })
    img=tf.decode_raw(features['img'],tf.uint8)
    label=tf.cast(features['label'],tf.int64)
    roi=tf.cast(features['roi'],tf.float32)
    landmark=tf.cast(features['landmark'],tf.float32)
    # img = tf.reshape(img, [48,48,3])   
    img = tf.reshape(img, [img_size,img_size,3])
    #     img=img_preprocess(img)
    min_after_dequeue = 1000  # 10000
    batch_size = 10  # 64
    capacity = min_after_dequeue + 10 * batch_size
    image_batch, label_batch, roi_batch, landmark_batch = tf.train.shuffle_batch([img,label,roi,landmark],
                                                        batch_size=batch_size,
                                                        capacity=capacity,
                                                        min_after_dequeue=min_after_dequeue,
                                                        num_threads=7)
    
    
    i=0
    with tf.Session() as sess:
        sess.run((tf.global_variables_initializer(),
                  tf.local_variables_initializer()))
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess,coord=coord)
        while(1):
            i=i+1
            if(i%9==1):
                print(sess.run(label_batch))
    View Code

    why?

     解决方法:详见here;

  • 相关阅读:
    扒几个 3D 模型备用
    向 3D 世界迈出一小步
    为什么说使用 Linux 系统学习 OpenGL 更方便
    Windows 下的 Linux环境
    windows git 的扩展用法——其他linux命令
    Linux 环境变量
    powershell(或者windows terminal)中使用git
    QT无边框窗体——拦截windows消息实现
    QT工具——开发技巧与其他工具
    QT工具——国际化工具
  • 原文地址:https://www.cnblogs.com/happyamyhope/p/11635357.html
Copyright © 2020-2023  润新知