Elasticsearch 定义字段时Norms选项的作用
本文介绍ElasticSearch中2种字段(text 和 keyword)的Norms参数作用。
创建ES索引时,一般指定2种配置信息:settings、mappings。settings 与数据存储有关(几个分片、几个副本);而mappings 是数据模型,类似于MySQL中的表结构定义。在Mapping信息中指定每个字段的类型,ElasticSearch支持多种类型的字段(field datatypes),比如String、Numeric、Date…其中String又细分成为种:keyword 和 text。在创建索引时,需要定义字段并为每个字段指定类型,示例如下:
PUT my_index
{
"settings": {
"number_of_shards": 1,
"number_of_replicas": 0
},
"mappings": {
"_doc": {
"_source": {
"enabled": true
},
"properties": {
"title": {
"type": "text",
"norms": false
},
"overview": {
"type": "text",
"norms": true
},
"body": {
"type": "text"
},
"author": {
"type": "keyword",
"norms": true
},
"chapters": {
"type": "keyword",
"norms": false
},
"email": {
"type": "keyword"
}
}
}
}
}
my_index 索引的 title 字段类型是 text,而 author 字段类型是 keyword。
对于 text 类型的字段而言,默认开启了norms,而 keyword 类型的字段则默认关闭了norms
Whether field-length should be taken into account when scoring queries. Accepts true(text filed datatype) or false(keyword filed datatype)
为什么 keyword 类型的字段默认关闭 norms 呢?keyword 类型的string 可理解为:Do index the field, but don't analyze the string value,也即:keyword 类型的字段是不会被Analyzer "分析成" 一个个的term的,它是一个single-token fields,因此也就不需要字段长度(fieldNorm)、tfNorm(term frequency Norm)这些归一化因子了。而 text 类型的字段会被分析器(Analyzer)分析,生成若干个terms,两个 text 类型的字段,一个可能有很多term(比如文章的正文),另一个只有很少的term(比如文章的标题),在多字段查询时,就需要长度归一化,这就是为什么 text 类型字段默认开启 norms 选项的原因吧。另外,对于Lucene常用的2种评分算法:tf-idf 和 bm25,tf-idf 就倾向于给长度较小的字段打高分,为什么呢?Lucene 的相似度评分公式,主要由三部分组成:IDF score,TF score 还有 fieldNorms。就TF-IDF评分公式而言,IDF score 是log(numDocs/(docFreq+1))
,TF score 是 sqrt(tf)
,fieldNorms 是 1/sqrt(length)
,因此:文档长度越短,fieldNorms越大,评分越高,这也是为什么TF-IDF严重偏向于给短文本打高分的原因。
norms 作用是什么?
norms 是一个用来计算文档/字段得分(Score)的"调节因子"。TF-IDF、BM25算法计算文档得分时都用到了norms参数,具体可参考这篇文章中的Lucene文档得分计算公式。
ElasticSearch中的一篇文档(Document),里面有多个字段。查询解析器(QueryParser)将用户输入的查询字符串解析成Terms ,在多字段搜索中,每个 Term 会去匹配各个字段,为每个字段计算一个得分,各个字段的得分经过某种方式(以词为中心的搜索 vs 以字段为中心的搜索)组合起来,最终得到一篇文档的得分。
ES官方文档关于Norms解释:
Norms store various normalization factors that are later used at query time in order to compute the score of a document relatively to a query.
这里的 normalization factors 用于查询计算文档得分时进行 boosting。比如根据BM25算法给出的公式(freq*(k1+1))/(freq+k1*(1-b+b*fieldLength/avgFieldLength))
计算文档得分时,其中的fieldLength/avgFieldLength
就是 normalization factors。
norms 的代价
开启norms之后,每篇文档的每个字段需要一个字节存储norms。对于 text 类型的字段而言是默认开启norms的,因此对于不需要评分的 text 类型的字段,可以禁用norms,这算是一个调优点吧。
Although useful for scoring, norms also require quite a lot of disk (typically in the order of one byte per document per field in your index, even for documents that don’t have this specific field). As a consequence, if you don’t need scoring on a specific field, you should disable norms on that field
norms 因子属于 Index-time boosting一部分,也即:在索引文档(写入文档)的时候,就已经将所有boosting因子存储起来,在查询时从内存中读取,参与得分计算。参考《Lucene in action》中一段话:
During indexing, all sources of index-time boosts are combined into a single floating point number for each indexed field in the document. The document may have its own boost; each field may have a boost; and Lucene computes an automatic boost based on the number of tokens in the field (shorter fields have a higher boost). These boosts are combined and then compactly encoded (quantized) into a single byte, which is stored per field per document. During searching, norms for any field being searched are loaded into memory, decoded back into a floating-point number, and used when computing the relevance score.
另一种类型的 boosting 是search time boosting,在查询语句中指定boosting因子,然后动态计算出文档得分,具体可参考:《relevant search with applications for solr and elasticsearch》,本文不再详述。但是值得注意的是:目前的ES版本已经不再推荐使用index time boosting了,而是推荐使用 search time boosting。ES官方文档给出的理由如下:
- 在索引文档时存储的boosting因子(开启 norms 选项),一经存储,就无法改变。要想改变,只能reindex索引
- search time boosting 的效果和 index time boosting是一样的,并且search time boosting能够动态指定boosting因子(但计算文档得分时更消耗CPU吧),灵活性更大。而index time boosting需要额外的存储空间
- index time boosting因子存储在norms字段,它影响了 field length normalization,从而导致文档相似度计算结果不太准确(lower quality relevance calculations)
附:my_index索引的mapping 信息:
GET my_index/_mapping
{
"my_index": {
"mappings": {
"_doc": {
"properties": {
"author": {
"type": "keyword",
"norms": true
},
"body": {
"type": "text"
},
"chapters": {
"type": "keyword"
},
"email": {
"type": "keyword"
},
"overview": {
"type": "text"
},
"title": {
"type": "text",
"norms": false
}
}
}
}
}
}