• C# 文章相似度算法 Levenshtein 编辑距离算法(转)


    编辑距离的算法是首先由俄国科学家Levenshtein提出的,故又叫 Levenshtein Distance。一个字符串可以通过增加一个字符,删除一个字符,替换一个字符得到另外一个字符串,假设,我们把从字符串A转换成字符串B,前面3种操作所执行的最少次数称为AB相似度
    如  abc adc  度为 1
          ababababa babababab 度为 2
          abcd acdb 度为2

    下面是C#实现

    using System;
    using System.Text.RegularExpressions;
    using System.Threading.Tasks;
    
    namespace Levenshtein
    {
        /// <summary>
        /// 分析完成事件委托
        /// </summary>
        /// <param name="sim">相似度</param>
        public delegate void AnalyzerCompletedHander(double sim);
    
        /// <summary>
        /// 文章相似度工具
        /// </summary>
        public class LevenshteinDistance:IDisposable
        {
            private string str1;
            private string str2;
            private int[,] index;
            int k;
            Task<double> task;
    
            /// <summary>
            /// 分析完成事件
            /// </summary>
            public event AnalyzerCompletedHander AnalyzerCompleted;
    
            /// <summary>
            /// 获取或设置文章1
            /// </summary>
            public string Str1
            {
                get { return str1; }
                set
                {
                    str1 = Format(value);
                    index = new int[str1.Length, str2.Length];
                }
            }
    
            /// <summary>
            /// 获取或设置文章2
            /// </summary>
            public string Str2
            {
                get { return str2; }
                set
                {
                    str2 = Format(value);
                    index = new int[str1.Length, str2.Length];
                }
            }
    
            /// <summary>
            /// 运算总次数
            /// </summary>
            public int TotalTimes
            {
                get { return str1.Length * str2.Length; }
            }
    
            /// <summary>
            /// 是否完成
            /// </summary>
            public bool IsCompleted
            {
                get { return task.IsCompleted; }
            }
    
            /// <summary>
            /// 实例化
            /// </summary>
            /// <param name="str1">文章1</param>
            /// <param name="str2">文章2</param>
            public LevenshteinDistance(string str1, string str2)
            {
                this.str1 = Format(str1);
                this.str2 = Format(str2);
                index = new int[str1.Length, str2.Length];
            }
    
            public LevenshteinDistance()
            {
            }
    
            /// <summary>
            /// 异步开始任务
            /// </summary>
            public void Start()
            {
                task = new Task<double>(Analyzer);
                task.Start();
                task.ContinueWith(o => Completed(o.Result));
            }
    
            /// <summary>
            /// 同步开始任务
            /// </summary>
            /// <returns>相似度</returns>
            public double StartAyns()
            {
                task = new Task<double>(Analyzer);
                task.Start();
                task.Wait();
                return task.Result;
            }
    
            private void Completed(double s)
            {
                if (AnalyzerCompleted != null)
                {
                    AnalyzerCompleted(s);
                }
            }
    
            private double Analyzer()
            {
                if (str1.Length == 0 || str2.Length == 0)
                    return 0;
                for (int i = 0; i < str1.Length; i++)
                {
                    for (int j = 0; j < str2.Length; j++)
                    {
                        k = str1[i] == str2[j] ? 0 : 1;
                        if (i == 0&&j==0)
                        {
                            continue;
                        }
                        else if (i == 0)
                        {
                            index[i, j] = k + index[i, j - 1];
                            continue;
                        }
                        else if (j == 0)
                        {
                            index[i, j] = k + index[i - 1, j];
                            continue;
                        }
                        int temp = Min(index[i, j - 1],
                            index[i - 1, j],
                            index[i - 1, j - 1]);
                        index[i, j] = temp + k;
                    }
                }
                float similarty = 1 - (float)index[str1.Length - 1, str2.Length - 1]
                    / (str1.Length > str2.Length ? str1.Length : str2.Length);
                return similarty;
            }
    
            private string Format(string str)
            {
                str = Regex.Replace(str, @"[^a-zA-Z0-9\u4e00-\u9fa5\s]", "");
                return str;
            }
    
            private int Min(int a, int b, int c)
            {
                int temp = a < b ? a : b;
                temp = temp < c ? temp : c;
                return temp;
            }
    
            public void Dispose()
            {
                task.Dispose();
            }
        }
    }

    如非注明 均属原创 如需转载 都请注明: Alien的博客

    本文链接地址: C# 文章相似度算法 Levenshtein 编辑距离算法

  • 相关阅读:
    位军营 20190919-4 测试,结对要求
    位军营 20190919-5 代码规范,结对要求
    国内源
    hexo安装-nodejs
    python调用chrome打开指定网址
    生成证书,用于签名Android应用
    cygwin64-安装包管理工具
    Android-删除指定包名的App
    pyqt5加载网页的简单使用
    打包python到exe
  • 原文地址:https://www.cnblogs.com/haorensw/p/2518868.html
Copyright © 2020-2023  润新知