• 深度学习系列1-逻辑回归分类


    1. 基本框架理论

    1.1. Forward propagation

    image-20210908193905635

    1.2. Backward Propagation

    image-20210908194000597

    2. 代码流程

    前提:

    • 输入的X维度是(No.feature,No.sample)
    • 输出的Y维度是(1,No.sample)

    2.1. 初始化参数

    • weight用np.random.randn(a,b)*0.01来初始化
    • bias用np.zeros((a,b))来初始化
    def initiate_parameter(self,n_x,n_h,n_y):
        """
        Argument:
        n_x -- size of the input layer
        n_h -- size of the hidden layer
        n_y -- size of the output layer
        
        Returns:
        params -- python dictionary containing your parameters:
                        W1 -- weight matrix of shape (n_h, n_x)
                        b1 -- bias vector of shape (n_h, 1)
                        W2 -- weight matrix of shape (n_y, n_h)
                        b2 -- bias vector of shape (n_y, 1)
        """
    
        np.random.seed(2)
    
        W1 = np.random.randn(n_h,n_x)*0.01
        b1 = np.zeros((n_h,1))
        W2 = np.random.randn(n_y,n_h)*0.01
        b2 = np.zeros((n_y,1))
    
        parameters = {"W1": W1,
                      "b1":b1,
                      "W2":W2,
                      "b2":b2}
        return parameters
    

    2.2. 前向传播

    • 隐层使用tanh,输出层使用sigmoid
    • 计算激活函数
    def sigmoid(Z):
        A = 1/(1+np.exp(-Z))
        cache = Z
        return A, cache
    
    def relu(Z):
        A = np.maximum(0,Z)
        cache = Z 
        return A, cache
    
    • 构造单个前向函数
    def linear_forward(self, A_prev, W, b):
        Z = np.dot(W,A_prev) + b
        cache = (A_prev, W, b)
        return Z, cache
    
    • 前向传播激活函数选择器
    def linear_activation_forward(self,A_prev, W, b, activation="relu"):
        """
        Implement the forward propagation for the LINEAR->ACTIVATION layer
    
        Arguments:
        A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples)
        W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
        b -- bias vector, numpy array of shape (size of the current layer, 1)
        activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
    
        Returns:
        A -- the output of the activation function, also called the post-activation value 
        cache -- a python dictionary containing "linear_cache" and "activation_cache";
                 stored for computing the backward pass efficiently
        """
        if activation == "sigmoid":
            Z, linear_cache = linear_forward(A_prev, W, b)
            A, activation_cache = sigmoid(Z)
        if activation == "relu":
            Z, linear_cache = linear_forward(A_prev, W, b)
            A, activation_cache = relu(Z)
          
        cache = (linear_cache, activation_cache)
    
        return A, cache
    

    2.3. 计算损失函数

    • 计算网络算出来的y值和真实y的差距
    def compute_cost(AL, Y):
        """
        Implement the cost function defined by equation (7).
    
        Arguments:
        AL -- probability vector corresponding to your label predictions, shape (1, number of examples)
        Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples)
    
        Returns:
        cost -- cross-entropy cost
        """
        
        m = Y.shape[1]
    
        # Compute loss from aL and y.
        cost = (1./m) * (-np.dot(Y,np.log(AL).T) - np.dot(1-Y, np.log(1-AL).T))
        
        cost = np.squeeze(cost)      # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17).
        assert(cost.shape == ())
        
        return cost
    

    2.4. 反向传播:梯度下降

    • 计算出激活函数的导数
    def relu_backward(dA, cache):
    
        Z = cache
        dZ = np.array(dA, copy=True) # just converting dz to a correct object.
        # When z <= 0, you should set dz to 0 as well. 
        dZ[Z <= 0] = 0
        assert (dZ.shape == Z.shape)
        return dZ
    
    def sigmoid_backward(dA, cache):
        Z = cache
        s = 1/(1+np.exp(-Z))
        dZ = dA * s * (1-s)
        assert (dZ.shape == Z.shape)
        
        return dZ
    
    • 构造单个反向传播的函数
    def linear_backward(dZ, cache):
        """
        Implement the linear portion of backward propagation for a single layer (layer l)
    
        Arguments:
        dZ -- Gradient of the cost with respect to the linear output (of current layer l)
        cache -- tuple of values (A_prev, W, b) coming from the forward propagation in the current layer
    
        Returns:
        dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
        dW -- Gradient of the cost with respect to W (current layer l), same shape as W
        db -- Gradient of the cost with respect to b (current layer l), same shape as b
        """
        A_prev, W, b = cache
        m = A_prev.shape[1]
    
        dW = 1./m * np.dot(dZ,A_prev.T)
        db = 1./m * np.sum(dZ, axis = 1, keepdims = True)
        dA_prev = np.dot(W.T,dZ)
        
        assert (dA_prev.shape == A_prev.shape)
        assert (dW.shape == W.shape)
        assert (db.shape == b.shape)
        
        return dA_prev, dW, db
    
    • 设置反向传播的激活函数选择器
    def linear_activation_backward(dA, cache, activation):
        """
        Implement the backward propagation for the LINEAR->ACTIVATION layer.
        
        Arguments:
        dA -- post-activation gradient for current layer l 
        cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently
        activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
        
        Returns:
        dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
        dW -- Gradient of the cost with respect to W (current layer l), same shape as W
        db -- Gradient of the cost with respect to b (current layer l), same shape as b
        """
        linear_cache, activation_cache = cache
        
        if activation == "relu":
            dZ = relu_backward(dA, activation_cache)
            dA_prev, dW, db = linear_backward(dZ, linear_cache)
            
        elif activation == "sigmoid":
            dZ = sigmoid_backward(dA, activation_cache)
            dA_prev, dW, db = linear_backward(dZ, linear_cache)
        
        return dA_prev, dW, db
    

    2.5 更新参数

    def update_parameters(parameters, grads, learning_rate):
        """
        Update parameters using gradient descent
        
        Arguments:
        parameters -- python dictionary containing your parameters 
        grads -- python dictionary containing your gradients, output of L_model_backward
        
        Returns:
        parameters -- python dictionary containing your updated parameters 
                      parameters["W" + str(l)] = ... 
                      parameters["b" + str(l)] = ...
        """
        
        L = len(parameters) // 2 # number of layers in the neural network
    
        # Update rule for each parameter. Use a for loop.
        for l in range(L):
            parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate * grads["dW" + str(l+1)]
            parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate * grads["db" + str(l+1)]
            
        return parameters
    

    3.6. 预测

    def predict(X, y, parameters):
        """
        This function is used to predict the results of a  L-layer neural network.
        
        Arguments:
        X -- data set of examples you would like to label
        parameters -- parameters of the trained model
        
        Returns:
        p -- predictions for the given dataset X
        """
        
        m = X.shape[1]
        n = len(parameters) // 2 # number of layers in the neural network
        p = np.zeros((1,m))
        
        # Forward propagation
        probas, caches = L_model_forward(X, parameters)
    
        
        # convert probas to 0/1 predictions
        for i in range(0, probas.shape[1]):
            if probas[0,i] > 0.5:
                p[0,i] = 1
            else:
                p[0,i] = 0
        
        #print results
        #print ("predictions: " + str(p))
        #print ("true labels: " + str(y))
        print("Accuracy: "  + str(np.sum((p == y)/m)))
            
        return p
    

    3. 应用

    3.1. 构建一个两层神经网络

    Question: Use the helper functions you have implemented in the previous assignment to build a 2-layer neural network with the following structure: LINEAR -> RELU -> LINEAR -> SIGMOID. The functions you may need and their inputs are:

    def initialize_parameters(n_x, n_h, n_y):
        ...
        return parameters 
    def linear_activation_forward(A_prev, W, b, activation):
        ...
        return A, cache
    def compute_cost(AL, Y):
        ...
        return cost
    def linear_activation_backward(dA, cache, activation):
        ...
        return dA_prev, dW, db
    def update_parameters(parameters, grads, learning_rate):
        ...
        return parameters
    
    • 完全的代码是
    # GRADED FUNCTION: two_layer_model
    
    def two_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):
        """
        Implements a two-layer neural network: LINEAR->RELU->LINEAR->SIGMOID.
        
        Arguments:
        X -- input data, of shape (n_x, number of examples)
        Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)
        layers_dims -- dimensions of the layers (n_x, n_h, n_y)
        num_iterations -- number of iterations of the optimization loop
        learning_rate -- learning rate of the gradient descent update rule
        print_cost -- If set to True, this will print the cost every 100 iterations 
        
        Returns:
        parameters -- a dictionary containing W1, W2, b1, and b2
        """
        
        np.random.seed(1)
        grads = {}
        costs = []                              # to keep track of the cost
        m = X.shape[1]                           # number of examples
        (n_x, n_h, n_y) = layers_dims
        
        # Initialize parameters dictionary, by calling one of the functions you'd previously implemented
        ### START CODE HERE ### (≈ 1 line of code)
        parameters = initialize_parameters(n_x, n_h, n_y)
        ### END CODE HERE ###
        
        # Get W1, b1, W2 and b2 from the dictionary parameters.
        W1 = parameters["W1"]
        b1 = parameters["b1"]
        W2 = parameters["W2"]
        b2 = parameters["b2"]
        
        # Loop (gradient descent)
    
        for i in range(0, num_iterations):
    
            # Forward propagation: LINEAR -> RELU -> LINEAR -> SIGMOID. Inputs: "X, W1, b1". Output: "A1, cache1, A2, cache2".
            ### START CODE HERE ### (≈ 2 lines of code)
            A1, cache1 = linear_activation_forward(X, W1, b1, "relu")
            A2, cache2 = linear_activation_forward(A1, W2, b2, "sigmoid")
            ### END CODE HERE ###
            
            # Compute cost
            ### START CODE HERE ### (≈ 1 line of code)
            cost = compute_cost(A2, Y)
            ### END CODE HERE ###
            
            # Initializing backward propagation
            dA2 = - (np.divide(Y, A2) - np.divide(1 - Y, 1 - A2))
            
            # Backward propagation. Inputs: "dA2, cache2, cache1". Outputs: "dA1, dW2, db2; also dA0 (not used), dW1, db1".
            ### START CODE HERE ### (≈ 2 lines of code)
            dA1, dW2, db2 = linear_activation_backward(dA2, cache2, "sigmoid")
            dA0, dW1, db1 = linear_activation_backward(dA1, cache1, "relu")
            ### END CODE HERE ###
            
            # Set grads['dWl'] to dW1, grads['db1'] to db1, grads['dW2'] to dW2, grads['db2'] to db2
            grads['dW1'] = dW1
            grads['db1'] = db1
            grads['dW2'] = dW2
            grads['db2'] = db2
            
            # Update parameters.
            ### START CODE HERE ### (approx. 1 line of code)
            parameters = update_parameters(parameters, grads, learning_rate)
            ### END CODE HERE ###
    
            # Retrieve W1, b1, W2, b2 from parameters
            W1 = parameters["W1"]
            b1 = parameters["b1"]
            W2 = parameters["W2"]
            b2 = parameters["b2"]
            
            # Print the cost every 100 training example
            if print_cost and i % 100 == 0:
                print("Cost after iteration {}: {}".format(i, np.squeeze(cost)))
            if print_cost and i % 100 == 0:
                costs.append(cost)
           
        # plot the cost
    
        plt.plot(np.squeeze(costs))
        plt.ylabel('cost')
        plt.xlabel('iterations (per tens)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()
        
        return parameters
    

    3.2. 构建一个N层的深度神经网络

    Question: Use the helper functions you have implemented previously to build an (L)-layer neural network with the following structure: [LINEAR -> RELU]( imes)(L-1) -> LINEAR -> SIGMOID. The functions you may need and their inputs are:

    def initialize_parameters_deep(layer_dims):
        ...
        return parameters 
    def L_model_forward(X, parameters):
        ...
        return AL, caches
    def compute_cost(AL, Y): # same to above
        ...
        return cost
    def L_model_backward(AL, Y, caches): # 
        ...
        return grads
    def update_parameters(parameters, grads, learning_rate): # same to above
        ...
        return parameters
    

    DNN参数初始化

    def initialize_parameters_deep(layer_dims):
        """
        Arguments:
        layer_dims -- python array (list) containing the dimensions of each layer in our network
        
        Returns:
        parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
                        Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
                        bl -- bias vector of shape (layer_dims[l], 1)
        """
        
        np.random.seed(1)
        parameters = {}
        L = len(layer_dims)            # number of layers in the network
    
        for l in range(1, L):
            parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) / np.sqrt(layer_dims[l-1]) #*0.01
            parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))
            
            assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1]))
            assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))
    
            
        return parameters
    

    DNN 前向传播

    def L_model_forward(X, parameters):
        """
        Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computation
        
        Arguments:
        X -- data, numpy array of shape (input size, number of examples)
        parameters -- output of initialize_parameters_deep()
        
        Returns:
        AL -- last post-activation value
        caches -- list of caches containing:
                    every cache of linear_relu_forward() (there are L-1 of them, indexed from 0 to L-2)
                    the cache of linear_sigmoid_forward() (there is one, indexed L-1)
        """
    
        caches = []
        A = X
        L = len(parameters) // 2                  # number of layers in the neural network
        
        # Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list.
        for l in range(1, L):
            A_prev = A 
            A, cache = linear_activation_forward(A_prev, parameters['W' + str(l)], parameters['b' + str(l)], activation = "relu")
            caches.append(cache)
        
        # Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list.
        AL, cache = linear_activation_forward(A, parameters['W' + str(L)], parameters['b' + str(L)], activation = "sigmoid")
        caches.append(cache)
        
        assert(AL.shape == (1,X.shape[1]))
                
        return AL, caches
    

    DNN 损失函数

    和之前的一样

    DNN 后向传播

    def L_model_backward(AL, Y, caches):
        """
        Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group
        
        Arguments:
        AL -- probability vector, output of the forward propagation (L_model_forward())
        Y -- true "label" vector (containing 0 if non-cat, 1 if cat)
        caches -- list of caches containing:
                    every cache of linear_activation_forward() with "relu" (there are (L-1) or them, indexes from 0 to L-2)
                    the cache of linear_activation_forward() with "sigmoid" (there is one, index L-1)
        
        Returns:
        grads -- A dictionary with the gradients
                 grads["dA" + str(l)] = ... 
                 grads["dW" + str(l)] = ...
                 grads["db" + str(l)] = ... 
        """
        grads = {}
        L = len(caches) # the number of layers
        m = AL.shape[1]
        Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL
        
        # Initializing the backpropagation
        dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
        
        # Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "AL, Y, caches". Outputs: "grads["dAL"], grads["dWL"], grads["dbL"]
        current_cache = caches[L-1]
        grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, activation = "sigmoid")
        
        for l in reversed(range(L-1)):
            # lth layer: (RELU -> LINEAR) gradients.
            current_cache = caches[l]
            dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l + 2)], current_cache, activation = "relu")
            grads["dA" + str(l + 1)] = dA_prev_temp
            grads["dW" + str(l + 1)] = dW_temp
            grads["db" + str(l + 1)] = db_temp
    
        return grads
    

    DNN 参数更新

    和之前的一样

  • 相关阅读:
    设计模式学习工厂模式
    vector详解
    sizeof() c++primer
    list vector
    vc windows 服务问题:服务没有及时响应启动或控制请求
    程序员规范
    c++ map
    省略符形参
    SQL2005附加数据库时遇到的问题:用户组或角色在当前数据库已存在 .
    Socket 阻塞
  • 原文地址:https://www.cnblogs.com/haochen273/p/15241267.html
Copyright © 2020-2023  润新知