• Python Numpy-基础教程



    1. 为什么要学习numpy?


    • numpy可以对整个array进行复杂计算,而不需要像list一样写loop
    • 它的ndarray提供了快速的基于array的数值运算
    • memory-efficient container that provides fast numerical operations
    • 学习pandas的必备

    证明numpy比list优秀:

    import numpy as np
    my_arr = np.arange(1000000)
    my_list = list(range(1000000))
    
    %time for _ in range(10): my_arr2 = my_arr * 2                  # Wall time: 25 ms
    %time for _ in range(10): my_list2 = [x * 2 for x in my_list]   # Wall time: 933 ms
    

    2. Numpy基本用法


    2.1. 创建np.ndarry

    注意: numpy只能装同类型的数据

    # Method 1: np.array()
    ## 1-D
    a = np.array([1,2,3])
    a.shape
    a.dtype  # int32, boolean, string, float
    a.ndim
    
    ## 2-D
    a = np.array([[0,1,2],[3,4,5]])
    
    # Method 2:使用函数(arange, linspace, ones, zeros, eys, diag,random)创建  
    a = np.arange(10)
    a = np.linspace(0,1,6, endpoint=False)
    a = np.ones((3,3))
    a = np.zeros((3,3))
    a = np.eye(3)  
    a = np.diag(np.array([1,2,3,4]))  
    a = np.triu(np.ones((3,3)),1)
    
    # Method 3: Random values
    a = np.random.rand(4)   # unifomr in [0,1]
    a = np.random.randn(4) # Gaussian
    np.random.seed(1234)
    

    2.2. Indexing and Slicing

    • Slice create a view on the original array(change will affect original array)
    # 1-D
    a = np.arange(10)
    a[5], a[-1]    # Index: 4,9 
    a[5:8] = 12    # Slice: all 5-8 is set as 12  
    arr[5:8].copy()   # Slice without view  
    
    # 2-D
    a = np.ones((3,3))
    a[2]           # second row
    a[2].copy()    # slice without view
    a[0][2]        # special value  
    
    a[:2]
    a[:2, 1:] = 0
    

    Boolean Index

    names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])
    data = np.random.randn(7, 4)
    
    data[names == 'Bob']  # select a row from data based on the if names equals Bob(boolean value)
    data[~(names == 'Bob')]    # not equal to Bob
    data[(names == 'Bob') | (names == 'Will')]    #e qual to Bob and Will
    data[data<0] = 0  
    

    2.3. Universal Functions

    a function that performs element-wise operations on data in ndarrays

    a = np.arange(10)  
    b = np.arange(2,12)
    
    # single
    a + 1
    a*2 
    np.sqrt(a)
    np.exp(a)
    np.sin(a)
    
    # binary
    a>b                     # return boolean ndarray
    np.array_equal(a,b)     # eual? 
    np.maximum(a, b)        # find max value between each pair values
    np.logical_or(a,b)      # Attentions, a and b must be boolean array
    

    2.4. Array-oriented

    • Probelm 1

    we wished to evaluate the function `sqrt(x^2 + y^2)`` across a regular grid of values.

    The np.meshgrid function takes two 1D arrays and produces two 2D matrices corresponding to all pairs of (x, y) in the two arrays:

    points = np.arange(-5, 5, 0.01) # 1000 equally spaced points
    xs, ys = np.meshgrid(points, points)
    z = np.sqrt(xs ** 2 + ys ** 2)
    
    import matplotlib.pyplot as plt
    %matplotlib inline
    
    plt.imshow(z, cmap=plt.cm.gray); plt.colorbar()
    plt.title("Image plot of $sqrt{x^2 + y^2}$ for a grid of values")
    

    • Problem 2

    we have two array(x,y) and one boolean array, we want select x if boolean=True, while select y if boolean=False->np.where()

    xarr = np.array([1.1, 1.2, 1.3, 1.4, 1.5])
    yarr = np.array([2.1, 2.2, 2.3, 2.4, 2.5])
    cond = np.array([True, False, True, True, False])
    result = np.where(cond, xarr, yarr)        # array([1.1, 2.2, 1.3, 1.4, 2.5])
    

    np.where的后面两个参数可以是array,数字. 是数字的话就可以做替换工作,比如我们将随机生成的array中大于0的替换为2,小于0的替换为-2

    arr = np.random.randn(4, 4)
    np.where(arr > 0, 2, -2)     # 大于0改为2,小于0改为-2
    np.where(arr > 0, 2, arr)    # 大于0改为2,小于0不变
    

    2.5. Mathematical Operations

    a = np.random.randn(5, 4)  
    np.mean(a)
    np.mean(a, axis = 1)
    np.sum(a)
    a.consum()
    a.sort()
    a.argmax()  # index of maxium
    
    names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])
    np.unique(names)
    sorted(set(names))
    


  • 相关阅读:
    OpenStack安装及监控配置视频教程
    具有可视化的功能的一款开源软件Gource
    Ubuntu 12.04使用演示
    VisualRoute for Mac OS 体验
    P1006-传纸条
    Leetcode-1157 Online Majority Element In Subarray(子数组中占绝大多数的元素)
    Leetcode-1156 Swap For Maximum Repeated Substring(单字符重复子串的最大长度)
    Leetcode-1155 Number of Dice Rolls With Target Sum(掷骰子的N种方法)
    Leetcode-1154 Ordinal Number Of Date(一年中的第几天)
    P1508-Likecloud-吃、吃、吃
  • 原文地址:https://www.cnblogs.com/haochen273/p/10218725.html
Copyright © 2020-2023  润新知