• Ants(二分图最佳完美匹配)


                    Ants

    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 6904   Accepted: 2164   Special Judge

    Description

    Young naturalist Bill studies ants in school. His ants feed on plant-louses that live on apple trees. Each ant colony needs its own apple tree to feed itself.

    Bill has a map with coordinates of n ant colonies and n apple trees. He knows that ants travel from their colony to their feeding places and back using chemically tagged routes. The routes cannot intersect each other or ants will get confused and get to the wrong colony or tree, thus spurring a war between colonies.

    Bill would like to connect each ant colony to a single apple tree so that all n routes are non-intersecting straight lines. In this problem such connection is always possible. Your task is to write a program that finds such connection.

    On this picture ant colonies are denoted by empty circles and apple trees are denoted by filled circles. One possible connection is denoted by lines.

    Input

    The first line of the input file contains a single integer number n (1 ≤ n ≤ 100) — the number of ant colonies and apple trees. It is followed by n lines describing n ant colonies, followed by n lines describing n apple trees. Each ant colony and apple tree is described by a pair of integer coordinates x and y (−10 000 ≤ xy ≤ 10 000) on a Cartesian plane. All ant colonies and apple trees occupy distinct points on a plane. No three points are on the same line.

    Output

    Write to the output file n lines with one integer number on each line. The number written on i-th line denotes the number (from 1 to n) of the apple tree that is connected to the i-th ant colony.

    Sample Input

    5
    -42 58
    44 86
    7 28
    99 34
    -13 -59
    -47 -44
    86 74
    68 -75
    -68 60
    99 -60

    Sample Output

    4
    2
    1
    5
    3

    Source

     
     
     
    //题意: 有 n 个蚂蚁,n 个树,每个蚂蚁要连一个树,并且路径不能相交,求任意一种方案
    输入: n,n 个蚂蚁的坐标,n 个树的坐标,
    输出: n 个蚂蚁相连的树的编号
     
    //对于输入输出还是要小心点,这题就是二分图最佳完美匹配的模板题了,因为不能相交,容易想明白。
    建一个以距离的负值为权的图跑算法即可。
      1 //# include <bits/stdc++.h>
      2 # include <iostream>
      3 # include <stdio.h>
      4 # include <string.h>
      5 # include <math.h>
      6 using namespace std;
      7 # define eps 1e-6
      8 # define LL long long
      9 # define INF 1e20
     10 # define MX 105
     11 struct Node{
     12     double x,y;
     13 }ant[MX], tree[MX];
     14 
     15 int n;
     16 double W[MX][MX];
     17 double Lx[MX], Ly[MX];
     18 int link[MX];           //右边匹配左的
     19 bool S[MX], T[MX];
     20 
     21 double dist(int x,int y){
     22     return sqrt((ant[x].x-tree[y].x)*(ant[x].x-tree[y].x)+(ant[x].y-tree[y].y)*(ant[x].y-tree[y].y));
     23 }
     24 
     25 bool match(int p)
     26 {
     27     S[p]=1;
     28     for (int i=1;i<=n;i++)
     29     {
     30         if (!T[i]&&(fabs(Lx[p]+Ly[i]-W[p][i])<=eps))
     31         {
     32             T[i]=1;
     33             if (link[i]==-1 || match(link[i]))
     34             {
     35                 link[i]=p;
     36                 return 1;
     37             }
     38         }
     39     }
     40     return 0;
     41 }
     42 
     43 void update()
     44 {
     45     double del = INF;
     46     for (int i=1;i<=n;i++) if(S[i])
     47         for (int j=1;j<=n;j++) if (!T[j])
     48             if (Lx[i]+Ly[j]-W[i][j] < del - eps)
     49             del = Lx[i]+Ly[j]-W[i][j];
     50     for (int i=1;i<=n;i++)
     51     {
     52         if (S[i]) Lx[i]-=del;
     53         if (T[i]) Ly[i]+=del;
     54     }
     55 }
     56 
     57 void KM()
     58 {
     59     memset(link,-1,sizeof(link));
     60     for (int i=1;i<=n;i++)
     61     {
     62         Ly[i]=0.0;
     63         Lx[i]=-INF;
     64         for (int j=1;j<=n;j++)
     65             if (W[i][j] > Lx[i] + eps)
     66             Lx[i] = W[i][j];
     67     }
     68     for (int i=1;i<=n;i++)
     69     {
     70         while (1)
     71         {
     72             memset(S,0,sizeof(S));
     73             memset(T,0,sizeof(T));
     74             if (match(i)) break;
     75             else update();
     76         }
     77     }
     78 }
     79 
     80 int main()
     81 {
     82     while (scanf("%d",&n)!=EOF)
     83     {
     84         for (int i=1;i<=n;i++)
     85             scanf("%lf%lf",&ant[i].x, &ant[i].y);
     86         for (int i=1;i<=n;i++)
     87             scanf("%lf%lf",&tree[i].x, &tree[i].y);
     88         for (int i=1;i<=n;i++)
     89             for(int j=1;j<=n;j++)
     90                 W[i][j] = -dist(i,j);
     91         KM();
     92         for(int i = 1; i <= n; ++i)
     93         {
     94             for(int j = 1; j <= n; ++j)
     95             {
     96                 if(link[j] == i)
     97                 {
     98                     printf("%d
    ",j);
     99                     break;
    100                 }
    101             }
    102         }
    103     }
    104     return 0;
    105 }
    View Code
     
  • 相关阅读:
    Twitter如何在数千台服务器上快速部署代码?
    系统架构师学习笔记_第六章(上)_连载
    使用IIS内置压缩功能,增加网站访问速度
    系统架构师学习笔记_第八章_连载
    微软企业库4.1学习笔记(十五)缓存模块3 使用数据库作为后端存储
    快速搞懂 SQL Server 的锁定和阻塞
    微软企业库4.1学习笔记(十四)缓存模块2 使用缓存模块进行开发
    微软企业库4.1学习笔记(十六)缓存模块4 服务器场中的缓存使用
    Agile PLM Engineering Collaboration
    EC Client Customizing EC Client 客户化
  • 原文地址:https://www.cnblogs.com/haoabcd2010/p/7784408.html
Copyright © 2020-2023  润新知