• RSA加密算法



    -------RSAUtils.java----------------


    package my.tools.security; import java.io.File; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.ObjectInputStream; import java.io.ObjectOutputStream; import java.math.BigInteger; import java.security.KeyPair; import java.security.KeyFactory; import java.security.KeyPairGenerator; import java.security.Provider; import java.security.PublicKey; import java.security.PrivateKey; import java.security.SecureRandom; import java.security.NoSuchAlgorithmException; import java.security.InvalidParameterException; import java.security.interfaces.RSAPublicKey; import java.security.interfaces.RSAPrivateKey; import java.security.spec.RSAPublicKeySpec; import java.security.spec.RSAPrivateKeySpec; import java.security.spec.InvalidKeySpecException; import javax.crypto.Cipher; import org.apache.commons.io.IOUtils; import org.apache.commons.io.FileUtils; import org.apache.commons.codec.DecoderException; import org.apache.commons.codec.binary.Hex; import org.bouncycastle.jce.provider.BouncyCastleProvider; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.apache.commons.lang.StringUtils; import org.apache.commons.lang.time.DateFormatUtils; /** * RSA算法加密/解密工具类。 * * @author fuchun * @version 1.0.0, 2010-05-05 */ public abstract class RSAUtils { private static final Logger LOGGER = LoggerFactory.getLogger(RSAUtils.class); /** 算法名称 */ private static final String ALGORITHOM = "RSA"; /**保存生成的密钥对的文件名称。 */ private static final String RSA_PAIR_FILENAME = "/__RSA_PAIR.txt"; /** 密钥大小 */ private static final int KEY_SIZE = 1024; /** 默认的安全服务提供者 */ private static final Provider DEFAULT_PROVIDER = new BouncyCastleProvider(); private static KeyPairGenerator keyPairGen = null; private static KeyFactory keyFactory = null; /** 缓存的密钥对。 */ private static KeyPair oneKeyPair = null; private static File rsaPairFile = null; static { try { keyPairGen = KeyPairGenerator.getInstance(ALGORITHOM, DEFAULT_PROVIDER); keyFactory = KeyFactory.getInstance(ALGORITHOM, DEFAULT_PROVIDER); } catch (NoSuchAlgorithmException ex) { LOGGER.error(ex.getMessage()); } rsaPairFile = new File(getRSAPairFilePath()); } private RSAUtils() { } /** * 生成并返回RSA密钥对。 */ private static synchronized KeyPair generateKeyPair() { try { keyPairGen.initialize(KEY_SIZE, new SecureRandom(DateFormatUtils.format("yyyyMMdd").getBytes())); oneKeyPair = keyPairGen.generateKeyPair(); saveKeyPair(oneKeyPair); return oneKeyPair; } catch (InvalidParameterException ex) { LOGGER.error("KeyPairGenerator does not support a key length of " + KEY_SIZE + ".", ex); } catch (NullPointerException ex) { LOGGER.error("RSAUtils#KEY_PAIR_GEN is null, can not generate KeyPairGenerator instance.", ex); } return null; } /** * 返回生成/读取的密钥对文件的路径。 */ private static String getRSAPairFilePath() { String urlPath = RSAUtils.class.getResource("/").getPath(); return (new File(urlPath).getParent() + RSA_PAIR_FILENAME); } /** * 若需要创建新的密钥对文件,则返回 {@code true},否则 {@code false}。 */ private static boolean isCreateKeyPairFile() { // 是否创建新的密钥对文件 boolean createNewKeyPair = false; if (!rsaPairFile.exists() || rsaPairFile.isDirectory()) { createNewKeyPair = true; } return createNewKeyPair; } /** * 将指定的RSA密钥对以文件形式保存。 * * @param keyPair 要保存的密钥对。 */ private static void saveKeyPair(KeyPair keyPair) { FileOutputStream fos = null; ObjectOutputStream oos = null; try { fos = FileUtils.openOutputStream(rsaPairFile); oos = new ObjectOutputStream(fos); oos.writeObject(keyPair); } catch (Exception ex) { ex.printStackTrace(); } finally { IOUtils.closeQuietly(oos); IOUtils.closeQuietly(fos); } } /** * 返回RSA密钥对。 */ public static KeyPair getKeyPair() { // 首先判断是否需要重新生成新的密钥对文件 if (isCreateKeyPairFile()) { // 直接强制生成密钥对文件,并存入缓存。 return generateKeyPair(); } if (oneKeyPair != null) { return oneKeyPair; } return readKeyPair(); } // 同步读出保存的密钥对 private static KeyPair readKeyPair() { FileInputStream fis = null; ObjectInputStream ois = null; try { fis = FileUtils.openInputStream(rsaPairFile); ois = new ObjectInputStream(fis); oneKeyPair = (KeyPair) ois.readObject(); return oneKeyPair; } catch (Exception ex) { ex.printStackTrace(); } finally { IOUtils.closeQuietly(ois); IOUtils.closeQuietly(fis); } return null; } /** * 根据给定的系数和专用指数构造一个RSA专用的公钥对象。 * * @param modulus 系数。 * @param publicExponent 专用指数。 * @return RSA专用公钥对象。 */ public static RSAPublicKey generateRSAPublicKey(byte[] modulus, byte[] publicExponent) { RSAPublicKeySpec publicKeySpec = new RSAPublicKeySpec(new BigInteger(modulus), new BigInteger(publicExponent)); try { return (RSAPublicKey) keyFactory.generatePublic(publicKeySpec); } catch (InvalidKeySpecException ex) { LOGGER.error("RSAPublicKeySpec is unavailable.", ex); } catch (NullPointerException ex) { LOGGER.error("RSAUtils#KEY_FACTORY is null, can not generate KeyFactory instance.", ex); } return null; } /** * 根据给定的系数和专用指数构造一个RSA专用的私钥对象。 * * @param modulus 系数。 * @param privateExponent 专用指数。 * @return RSA专用私钥对象。 */ public static RSAPrivateKey generateRSAPrivateKey(byte[] modulus, byte[] privateExponent) { RSAPrivateKeySpec privateKeySpec = new RSAPrivateKeySpec(new BigInteger(modulus), new BigInteger(privateExponent)); try { return (RSAPrivateKey) keyFactory.generatePrivate(privateKeySpec); } catch (InvalidKeySpecException ex) { LOGGER.error("RSAPrivateKeySpec is unavailable.", ex); } catch (NullPointerException ex) { LOGGER.error("RSAUtils#KEY_FACTORY is null, can not generate KeyFactory instance.", ex); } return null; } /** * 根据给定的16进制系数和专用指数字符串构造一个RSA专用的私钥对象。 * * @param modulus 系数。 * @param privateExponent 专用指数。 * @return RSA专用私钥对象。 */ public static RSAPrivateKey getRSAPrivateKey(String hexModulus, String hexPrivateExponent) { if(StringUtils.isBlank(hexModulus) || StringUtils.isBlank(hexPrivateExponent)) { if(LOGGER.isDebugEnabled()) { LOGGER.debug("hexModulus and hexPrivateExponent cannot be empty. RSAPrivateKey value is null to return."); } return null; } byte[] modulus = null; byte[] privateExponent = null; try { modulus = Hex.decodeHex(hexModulus.toCharArray()); privateExponent = Hex.decodeHex(hexPrivateExponent.toCharArray()); } catch(DecoderException ex) { LOGGER.error("hexModulus or hexPrivateExponent value is invalid. return null(RSAPrivateKey)."); } if(modulus != null && privateExponent != null) { return generateRSAPrivateKey(modulus, privateExponent); } return null; } /** * 根据给定的16进制系数和专用指数字符串构造一个RSA专用的公钥对象。 * * @param modulus 系数。 * @param publicExponent 专用指数。 * @return RSA专用公钥对象。 */ public static RSAPublicKey getRSAPublidKey(String hexModulus, String hexPublicExponent) { if(StringUtils.isBlank(hexModulus) || StringUtils.isBlank(hexPublicExponent)) { if(LOGGER.isDebugEnabled()) { LOGGER.debug("hexModulus and hexPublicExponent cannot be empty. return null(RSAPublicKey)."); } return null; } byte[] modulus = null; byte[] publicExponent = null; try { modulus = Hex.decodeHex(hexModulus.toCharArray()); publicExponent = Hex.decodeHex(hexPublicExponent.toCharArray()); } catch(DecoderException ex) { LOGGER.error("hexModulus or hexPublicExponent value is invalid. return null(RSAPublicKey)."); } if(modulus != null && publicExponent != null) { return generateRSAPublicKey(modulus, publicExponent); } return null; } /** * 使用指定的公钥加密数据。 * * @param publicKey 给定的公钥。 * @param data 要加密的数据。 * @return 加密后的数据。 */ public static byte[] encrypt(PublicKey publicKey, byte[] data) throws Exception { Cipher ci = Cipher.getInstance(ALGORITHOM, DEFAULT_PROVIDER); ci.init(Cipher.ENCRYPT_MODE, publicKey); return ci.doFinal(data); } /** * 使用指定的私钥解密数据。 * * @param privateKey 给定的私钥。 * @param data 要解密的数据。 * @return 原数据。 */ public static byte[] decrypt(PrivateKey privateKey, byte[] data) throws Exception { Cipher ci = Cipher.getInstance(ALGORITHOM, DEFAULT_PROVIDER); ci.init(Cipher.DECRYPT_MODE, privateKey); return ci.doFinal(data); } /** * 使用给定的公钥加密给定的字符串。 * <p /> * 若 {@code publicKey} 为 {@code null},或者 {@code plaintext} 为 {@code null} 则返回 {@code * null}。 * * @param publicKey 给定的公钥。 * @param plaintext 字符串。 * @return 给定字符串的密文。 */ public static String encryptString(PublicKey publicKey, String plaintext) { if (publicKey == null || plaintext == null) { return null; } byte[] data = plaintext.getBytes(); try { byte[] en_data = encrypt(publicKey, data); return new String(Hex.encodeHex(en_data)); } catch (Exception ex) { LOGGER.error(ex.getCause().getMessage()); } return null; } /** * 使用默认的公钥加密给定的字符串。 * <p /> * 若{@code plaintext} 为 {@code null} 则返回 {@code null}。 * * @param plaintext 字符串。 * @return 给定字符串的密文。 */ public static String encryptString(String plaintext) { if(plaintext == null) { return null; } byte[] data = plaintext.getBytes(); KeyPair keyPair = getKeyPair(); try { byte[] en_data = encrypt((RSAPublicKey)keyPair.getPublic(), data); return new String(Hex.encodeHex(en_data)); } catch(NullPointerException ex) { LOGGER.error("keyPair cannot be null."); } catch(Exception ex) { LOGGER.error(ex.getCause().getMessage()); } return null;

        }
    
        /**
         * 使用给定的私钥解密给定的字符串。
         * <p />
         * 若私钥为 {@code null},或者 {@code encrypttext} 为 {@code null}或空字符串则返回 {@code null}。
         * 私钥不匹配时,返回 {@code null}。
         * 
         * @param privateKey 给定的私钥。
         * @param encrypttext 密文。
         * @return 原文字符串。
         */
        public static String decryptString(PrivateKey privateKey, String encrypttext) {
            if (privateKey == null || StringUtils.isBlank(encrypttext)) {
                return null;
            }
            try {
                byte[] en_data = Hex.decodeHex(encrypttext.toCharArray());
                byte[] data = decrypt(privateKey, en_data);
                return new String(data);
            } catch (Exception ex) {
                LOGGER.error(String.format(""%s" Decryption failed. Cause: %s", encrypttext, ex.getCause().getMessage()));
            }
            return null;
        }
        
        /**
         * 使用默认的私钥解密给定的字符串。
         * <p />
         * 若{@code encrypttext} 为 {@code null}或空字符串则返回 {@code null}。
         * 私钥不匹配时,返回 {@code null}。
         * 
         * @param encrypttext 密文。
         * @return 原文字符串。
         */
        public static String decryptString(String encrypttext) {
            if(StringUtils.isBlank(encrypttext)) {
                return null;
            }
            KeyPair keyPair = getKeyPair();
            try {
                byte[] en_data = Hex.decodeHex(encrypttext.toCharArray());
                byte[] data = decrypt((RSAPrivateKey)keyPair.getPrivate(), en_data);
                return new String(data);
            } catch(NullPointerException ex) {
                LOGGER.error("keyPair cannot be null.");
            } catch (Exception ex) {
                LOGGER.error(String.format(""%s" Decryption failed. Cause: %s", encrypttext, ex.getMessage()));
            }
            return null;
        }
        
        /**
         * 使用默认的私钥解密由JS加密(使用此类提供的公钥加密)的字符串。
         * 
         * @param encrypttext 密文。
         * @return {@code encrypttext} 的原文字符串。
         */
        public static String decryptStringByJs(String encrypttext) {
            String text = decryptString(encrypttext);
            if(text == null) {
                return null;
            }
            return StringUtils.reverse(text);
        }
        
        /** 返回已初始化的默认的公钥。*/
        public static RSAPublicKey getDefaultPublicKey() {
            KeyPair keyPair = getKeyPair();
            if(keyPair != null) {
                return (RSAPublicKey)keyPair.getPublic();
            }
            return null;
        }
        
        /** 返回已初始化的默认的私钥。*/
        public static RSAPrivateKey getDefaultPrivateKey() {
            KeyPair keyPair = getKeyPair();
            if(keyPair != null) {
                return (RSAPrivateKey)keyPair.getPrivate();
            }
            return null;
        }
    }


    文档:

    // Struts2 Action方法中:

    // 将公钥的 modulus 和 exponent 传给页面。

    // Hex -> apache commons-codec

    RSAPublicKey publicKey = RSAUtils.getDefaultPublicKey();

    ActionContext.getContext().put("modulus", new String(Hex.encodeHex(publicKey.getModulus().toByteArray())));

    ActionContext.getContext().put("exponent", new String(Hex.encodeHex(publicKey.getPublicExponent().toByteArray())));

    // 页面里,Javascript对明文进行加密:

    var modulus = $('#hid_modulus').val(), exponent = $('#hid_exponent').val();

    var key = RSAUtils.getKeyPair(exponent, '', modulus);

    pwd1 = RSAUtils.encryptedString(key, pwd1);

    pwd2 = RSAUtils.encryptedString(key, pwd2);

    13

    14 // 服务器端,使用RSAUtils工具类对密文进行解密

    15 RSAUtils.decryptStringByJs(password1);


    所需的jar包 及 js文件 :

                         

    
    
    
    

    -------------security.js-------------------

    /*
    * RSA, a suite of routines for performing RSA public-key computations in JavaScript.
    * Copyright 1998-2005 David Shapiro.
    * Dave Shapiro
    * dave@ohdave.com
    * changed by Fuchun, 2010-05-06
    * fcrpg2005@gmail.com
    */

    (function($w) {

    if(typeof $w.RSAUtils === 'undefined')
    var RSAUtils = $w.RSAUtils = {};

    var biRadixBase = 2;
    var biRadixBits = 16;
    var bitsPerDigit = biRadixBits;
    var biRadix = 1 << 16; // = 2^16 = 65536
    var biHalfRadix = biRadix >>> 1;
    var biRadixSquared = biRadix * biRadix;
    var maxDigitVal = biRadix - 1;
    var maxInteger = 9999999999999998;

    //maxDigits:
    //Change this to accommodate your largest number size. Use setMaxDigits()
    //to change it!
    //
    //In general, if you're working with numbers of size N bits, you'll need 2*N
    //bits of storage. Each digit holds 16 bits. So, a 1024-bit key will need
    //
    //1024 * 2 / 16 = 128 digits of storage.
    //
    var maxDigits;
    var ZERO_ARRAY;
    var bigZero, bigOne;

    var BigInt = $w.BigInt = function(flag) {
    if (typeof flag == "boolean" && flag == true) {
    this.digits = null;
    } else {
    this.digits = ZERO_ARRAY.slice(0);
    }
    this.isNeg = false;
    };

    RSAUtils.setMaxDigits = function(value) {
    maxDigits = value;
    ZERO_ARRAY = new Array(maxDigits);
    for (var iza = 0; iza < ZERO_ARRAY.length; iza++) ZERO_ARRAY[iza] = 0;
    bigZero = new BigInt();
    bigOne = new BigInt();
    bigOne.digits[0] = 1;
    };
    RSAUtils.setMaxDigits(20);

    //The maximum number of digits in base 10 you can convert to an
    //integer without JavaScript throwing up on you.
    var dpl10 = 15;

    RSAUtils.biFromNumber = function(i) {
    var result = new BigInt();
    result.isNeg = i < 0;
    i = Math.abs(i);
    var j = 0;
    while (i > 0) {
    result.digits[j++] = i & maxDigitVal;
    i = Math.floor(i / biRadix);
    }
    return result;
    };

    //lr10 = 10 ^ dpl10
    var lr10 = RSAUtils.biFromNumber(1000000000000000);

    RSAUtils.biFromDecimal = function(s) {
    var isNeg = s.charAt(0) == '-';
    var i = isNeg ? 1 : 0;
    var result;
    // Skip leading zeros.
    while (i < s.length && s.charAt(i) == '0') ++i;
    if (i == s.length) {
    result = new BigInt();
    }
    else {
    var digitCount = s.length - i;
    var fgl = digitCount % dpl10;
    if (fgl == 0) fgl = dpl10;
    result = RSAUtils.biFromNumber(Number(s.substr(i, fgl)));
    i += fgl;
    while (i < s.length) {
    result = RSAUtils.biAdd(RSAUtils.biMultiply(result, lr10),
    RSAUtils.biFromNumber(Number(s.substr(i, dpl10))));
    i += dpl10;
    }
    result.isNeg = isNeg;
    }
    return result;
    };

    RSAUtils.biCopy = function(bi) {
    var result = new BigInt(true);
    result.digits = bi.digits.slice(0);
    result.isNeg = bi.isNeg;
    return result;
    };

    RSAUtils.reverseStr = function(s) {
    var result = "";
    for (var i = s.length - 1; i > -1; --i) {
    result += s.charAt(i);
    }
    return result;
    };

    var hexatrigesimalToChar = [
    '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
    'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j',
    'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't',
    'u', 'v', 'w', 'x', 'y', 'z'
    ];

    RSAUtils.biToString = function(x, radix) { // 2 <= radix <= 36
    var b = new BigInt();
    b.digits[0] = radix;
    var qr = RSAUtils.biDivideModulo(x, b);
    var result = hexatrigesimalToChar[qr[1].digits[0]];
    while (RSAUtils.biCompare(qr[0], bigZero) == 1) {
    qr = RSAUtils.biDivideModulo(qr[0], b);
    digit = qr[1].digits[0];
    result += hexatrigesimalToChar[qr[1].digits[0]];
    }
    return (x.isNeg ? "-" : "") + RSAUtils.reverseStr(result);
    };

    RSAUtils.biToDecimal = function(x) {
    var b = new BigInt();
    b.digits[0] = 10;
    var qr = RSAUtils.biDivideModulo(x, b);
    var result = String(qr[1].digits[0]);
    while (RSAUtils.biCompare(qr[0], bigZero) == 1) {
    qr = RSAUtils.biDivideModulo(qr[0], b);
    result += String(qr[1].digits[0]);
    }
    return (x.isNeg ? "-" : "") + RSAUtils.reverseStr(result);
    };

    var hexToChar = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
    'a', 'b', 'c', 'd', 'e', 'f'];

    RSAUtils.digitToHex = function(n) {
    var mask = 0xf;
    var result = "";
    for (i = 0; i < 4; ++i) {
    result += hexToChar[n & mask];
    n >>>= 4;
    }
    return RSAUtils.reverseStr(result);
    };

    RSAUtils.biToHex = function(x) {
    var result = "";
    var n = RSAUtils.biHighIndex(x);
    for (var i = RSAUtils.biHighIndex(x); i > -1; --i) {
    result += RSAUtils.digitToHex(x.digits[i]);
    }
    return result;
    };

    RSAUtils.charToHex = function(c) {
    var ZERO = 48;
    var NINE = ZERO + 9;
    var littleA = 97;
    var littleZ = littleA + 25;
    var bigA = 65;
    var bigZ = 65 + 25;
    var result;

    if (c >= ZERO && c <= NINE) {
    result = c - ZERO;
    } else if (c >= bigA && c <= bigZ) {
    result = 10 + c - bigA;
    } else if (c >= littleA && c <= littleZ) {
    result = 10 + c - littleA;
    } else {
    result = 0;
    }
    return result;
    };

    RSAUtils.hexToDigit = function(s) {
    var result = 0;
    var sl = Math.min(s.length, 4);
    for (var i = 0; i < sl; ++i) {
    result <<= 4;
    result |= RSAUtils.charToHex(s.charCodeAt(i));
    }
    return result;
    };

    RSAUtils.biFromHex = function(s) {
    var result = new BigInt();
    var sl = s.length;
    for (var i = sl, j = 0; i > 0; i -= 4, ++j) {
    result.digits[j] = RSAUtils.hexToDigit(s.substr(Math.max(i - 4, 0), Math.min(i, 4)));
    }
    return result;
    };

    RSAUtils.biFromString = function(s, radix) {
    var isNeg = s.charAt(0) == '-';
    var istop = isNeg ? 1 : 0;
    var result = new BigInt();
    var place = new BigInt();
    place.digits[0] = 1; // radix^0
    for (var i = s.length - 1; i >= istop; i--) {
    var c = s.charCodeAt(i);
    var digit = RSAUtils.charToHex(c);
    var biDigit = RSAUtils.biMultiplyDigit(place, digit);
    result = RSAUtils.biAdd(result, biDigit);
    place = RSAUtils.biMultiplyDigit(place, radix);
    }
    result.isNeg = isNeg;
    return result;
    };

    RSAUtils.biDump = function(b) {
    return (b.isNeg ? "-" : "") + b.digits.join(" ");
    };

    RSAUtils.biAdd = function(x, y) {
    var result;

    if (x.isNeg != y.isNeg) {
    y.isNeg = !y.isNeg;
    result = RSAUtils.biSubtract(x, y);
    y.isNeg = !y.isNeg;
    }
    else {
    result = new BigInt();
    var c = 0;
    var n;
    for (var i = 0; i < x.digits.length; ++i) {
    n = x.digits[i] + y.digits[i] + c;
    result.digits[i] = n % biRadix;
    c = Number(n >= biRadix);
    }
    result.isNeg = x.isNeg;
    }
    return result;
    };

    RSAUtils.biSubtract = function(x, y) {
    var result;
    if (x.isNeg != y.isNeg) {
    y.isNeg = !y.isNeg;
    result = RSAUtils.biAdd(x, y);
    y.isNeg = !y.isNeg;
    } else {
    result = new BigInt();
    var n, c;
    c = 0;
    for (var i = 0; i < x.digits.length; ++i) {
    n = x.digits[i] - y.digits[i] + c;
    result.digits[i] = n % biRadix;
    // Stupid non-conforming modulus operation.
    if (result.digits[i] < 0) result.digits[i] += biRadix;
    c = 0 - Number(n < 0);
    }
    // Fix up the negative sign, if any.
    if (c == -1) {
    c = 0;
    for (var i = 0; i < x.digits.length; ++i) {
    n = 0 - result.digits[i] + c;
    result.digits[i] = n % biRadix;
    // Stupid non-conforming modulus operation.
    if (result.digits[i] < 0) result.digits[i] += biRadix;
    c = 0 - Number(n < 0);
    }
    // Result is opposite sign of arguments.
    result.isNeg = !x.isNeg;
    } else {
    // Result is same sign.
    result.isNeg = x.isNeg;
    }
    }
    return result;
    };

    RSAUtils.biHighIndex = function(x) {
    var result = x.digits.length - 1;
    while (result > 0 && x.digits[result] == 0) --result;
    return result;
    };

    RSAUtils.biNumBits = function(x) {
    var n = RSAUtils.biHighIndex(x);
    var d = x.digits[n];
    var m = (n + 1) * bitsPerDigit;
    var result;
    for (result = m; result > m - bitsPerDigit; --result) {
    if ((d & 0x8000) != 0) break;
    d <<= 1;
    }
    return result;
    };

    RSAUtils.biMultiply = function(x, y) {
    var result = new BigInt();
    var c;
    var n = RSAUtils.biHighIndex(x);
    var t = RSAUtils.biHighIndex(y);
    var u, uv, k;

    for (var i = 0; i <= t; ++i) {
    c = 0;
    k = i;
    for (j = 0; j <= n; ++j, ++k) {
    uv = result.digits[k] + x.digits[j] * y.digits[i] + c;
    result.digits[k] = uv & maxDigitVal;
    c = uv >>> biRadixBits;
    //c = Math.floor(uv / biRadix);
    }
    result.digits[i + n + 1] = c;
    }
    // Someone give me a logical xor, please.
    result.isNeg = x.isNeg != y.isNeg;
    return result;
    };

    RSAUtils.biMultiplyDigit = function(x, y) {
    var n, c, uv;

    result = new BigInt();
    n = RSAUtils.biHighIndex(x);
    c = 0;
    for (var j = 0; j <= n; ++j) {
    uv = result.digits[j] + x.digits[j] * y + c;
    result.digits[j] = uv & maxDigitVal;
    c = uv >>> biRadixBits;
    //c = Math.floor(uv / biRadix);
    }
    result.digits[1 + n] = c;
    return result;
    };

    RSAUtils.arrayCopy = function(src, srcStart, dest, destStart, n) {
    var m = Math.min(srcStart + n, src.length);
    for (var i = srcStart, j = destStart; i < m; ++i, ++j) {
    dest[j] = src[i];
    }
    };

    var highBitMasks = [0x0000, 0x8000, 0xC000, 0xE000, 0xF000, 0xF800,
    0xFC00, 0xFE00, 0xFF00, 0xFF80, 0xFFC0, 0xFFE0,
    0xFFF0, 0xFFF8, 0xFFFC, 0xFFFE, 0xFFFF];

    RSAUtils.biShiftLeft = function(x, n) {
    var digitCount = Math.floor(n / bitsPerDigit);
    var result = new BigInt();
    RSAUtils.arrayCopy(x.digits, 0, result.digits, digitCount,
    result.digits.length - digitCount);
    var bits = n % bitsPerDigit;
    var rightBits = bitsPerDigit - bits;
    for (var i = result.digits.length - 1, i1 = i - 1; i > 0; --i, --i1) {
    result.digits[i] = ((result.digits[i] << bits) & maxDigitVal) |
    ((result.digits[i1] & highBitMasks[bits]) >>>
    (rightBits));
    }
    result.digits[0] = ((result.digits[i] << bits) & maxDigitVal);
    result.isNeg = x.isNeg;
    return result;
    };

    var lowBitMasks = [0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F,
    0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF,
    0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF];

    RSAUtils.biShiftRight = function(x, n) {
    var digitCount = Math.floor(n / bitsPerDigit);
    var result = new BigInt();
    RSAUtils.arrayCopy(x.digits, digitCount, result.digits, 0,
    x.digits.length - digitCount);
    var bits = n % bitsPerDigit;
    var leftBits = bitsPerDigit - bits;
    for (var i = 0, i1 = i + 1; i < result.digits.length - 1; ++i, ++i1) {
    result.digits[i] = (result.digits[i] >>> bits) |
    ((result.digits[i1] & lowBitMasks[bits]) << leftBits);
    }
    result.digits[result.digits.length - 1] >>>= bits;
    result.isNeg = x.isNeg;
    return result;
    };

    RSAUtils.biMultiplyByRadixPower = function(x, n) {
    var result = new BigInt();
    RSAUtils.arrayCopy(x.digits, 0, result.digits, n, result.digits.length - n);
    return result;
    };

    RSAUtils.biDivideByRadixPower = function(x, n) {
    var result = new BigInt();
    RSAUtils.arrayCopy(x.digits, n, result.digits, 0, result.digits.length - n);
    return result;
    };

    RSAUtils.biModuloByRadixPower = function(x, n) {
    var result = new BigInt();
    RSAUtils.arrayCopy(x.digits, 0, result.digits, 0, n);
    return result;
    };

    RSAUtils.biCompare = function(x, y) {
    if (x.isNeg != y.isNeg) {
    return 1 - 2 * Number(x.isNeg);
    }
    for (var i = x.digits.length - 1; i >= 0; --i) {
    if (x.digits[i] != y.digits[i]) {
    if (x.isNeg) {
    return 1 - 2 * Number(x.digits[i] > y.digits[i]);
    } else {
    return 1 - 2 * Number(x.digits[i] < y.digits[i]);
    }
    }
    }
    return 0;
    };

    RSAUtils.biDivideModulo = function(x, y) {
    var nb = RSAUtils.biNumBits(x);
    var tb = RSAUtils.biNumBits(y);
    var origYIsNeg = y.isNeg;
    var q, r;
    if (nb < tb) {
    // |x| < |y|
    if (x.isNeg) {
    q = RSAUtils.biCopy(bigOne);
    q.isNeg = !y.isNeg;
    x.isNeg = false;
    y.isNeg = false;
    r = biSubtract(y, x);
    // Restore signs, 'cause they're references.
    x.isNeg = true;
    y.isNeg = origYIsNeg;
    } else {
    q = new BigInt();
    r = RSAUtils.biCopy(x);
    }
    return [q, r];
    }

    q = new BigInt();
    r = x;

    // Normalize Y.
    var t = Math.ceil(tb / bitsPerDigit) - 1;
    var lambda = 0;
    while (y.digits[t] < biHalfRadix) {
    y = RSAUtils.biShiftLeft(y, 1);
    ++lambda;
    ++tb;
    t = Math.ceil(tb / bitsPerDigit) - 1;
    }
    // Shift r over to keep the quotient constant. We'll shift the
    // remainder back at the end.
    r = RSAUtils.biShiftLeft(r, lambda);
    nb += lambda; // Update the bit count for x.
    var n = Math.ceil(nb / bitsPerDigit) - 1;

    var b = RSAUtils.biMultiplyByRadixPower(y, n - t);
    while (RSAUtils.biCompare(r, b) != -1) {
    ++q.digits[n - t];
    r = RSAUtils.biSubtract(r, b);
    }
    for (var i = n; i > t; --i) {
    var ri = (i >= r.digits.length) ? 0 : r.digits[i];
    var ri1 = (i - 1 >= r.digits.length) ? 0 : r.digits[i - 1];
    var ri2 = (i - 2 >= r.digits.length) ? 0 : r.digits[i - 2];
    var yt = (t >= y.digits.length) ? 0 : y.digits[t];
    var yt1 = (t - 1 >= y.digits.length) ? 0 : y.digits[t - 1];
    if (ri == yt) {
    q.digits[i - t - 1] = maxDigitVal;
    } else {
    q.digits[i - t - 1] = Math.floor((ri * biRadix + ri1) / yt);
    }

    var c1 = q.digits[i - t - 1] * ((yt * biRadix) + yt1);
    var c2 = (ri * biRadixSquared) + ((ri1 * biRadix) + ri2);
    while (c1 > c2) {
    --q.digits[i - t - 1];
    c1 = q.digits[i - t - 1] * ((yt * biRadix) | yt1);
    c2 = (ri * biRadix * biRadix) + ((ri1 * biRadix) + ri2);
    }

    b = RSAUtils.biMultiplyByRadixPower(y, i - t - 1);
    r = RSAUtils.biSubtract(r, RSAUtils.biMultiplyDigit(b, q.digits[i - t - 1]));
    if (r.isNeg) {
    r = RSAUtils.biAdd(r, b);
    --q.digits[i - t - 1];
    }
    }
    r = RSAUtils.biShiftRight(r, lambda);
    // Fiddle with the signs and stuff to make sure that 0 <= r < y.
    q.isNeg = x.isNeg != origYIsNeg;
    if (x.isNeg) {
    if (origYIsNeg) {
    q = RSAUtils.biAdd(q, bigOne);
    } else {
    q = RSAUtils.biSubtract(q, bigOne);
    }
    y = RSAUtils.biShiftRight(y, lambda);
    r = RSAUtils.biSubtract(y, r);
    }
    // Check for the unbelievably stupid degenerate case of r == -0.
    if (r.digits[0] == 0 && RSAUtils.biHighIndex(r) == 0) r.isNeg = false;

    return [q, r];
    };

    RSAUtils.biDivide = function(x, y) {
    return RSAUtils.biDivideModulo(x, y)[0];
    };

    RSAUtils.biModulo = function(x, y) {
    return RSAUtils.biDivideModulo(x, y)[1];
    };

    RSAUtils.biMultiplyMod = function(x, y, m) {
    return RSAUtils.biModulo(RSAUtils.biMultiply(x, y), m);
    };

    RSAUtils.biPow = function(x, y) {
    var result = bigOne;
    var a = x;
    while (true) {
    if ((y & 1) != 0) result = RSAUtils.biMultiply(result, a);
    y >>= 1;
    if (y == 0) break;
    a = RSAUtils.biMultiply(a, a);
    }
    return result;
    };

    RSAUtils.biPowMod = function(x, y, m) {
    var result = bigOne;
    var a = x;
    var k = y;
    while (true) {
    if ((k.digits[0] & 1) != 0) result = RSAUtils.biMultiplyMod(result, a, m);
    k = RSAUtils.biShiftRight(k, 1);
    if (k.digits[0] == 0 && RSAUtils.biHighIndex(k) == 0) break;
    a = RSAUtils.biMultiplyMod(a, a, m);
    }
    return result;
    };


    $w.BarrettMu = function(m) {
    this.modulus = RSAUtils.biCopy(m);
    this.k = RSAUtils.biHighIndex(this.modulus) + 1;
    var b2k = new BigInt();
    b2k.digits[2 * this.k] = 1; // b2k = b^(2k)
    this.mu = RSAUtils.biDivide(b2k, this.modulus);
    this.bkplus1 = new BigInt();
    this.bkplus1.digits[this.k + 1] = 1; // bkplus1 = b^(k+1)
    this.modulo = BarrettMu_modulo;
    this.multiplyMod = BarrettMu_multiplyMod;
    this.powMod = BarrettMu_powMod;
    };

    function BarrettMu_modulo(x) {
    var $dmath = RSAUtils;
    var q1 = $dmath.biDivideByRadixPower(x, this.k - 1);
    var q2 = $dmath.biMultiply(q1, this.mu);
    var q3 = $dmath.biDivideByRadixPower(q2, this.k + 1);
    var r1 = $dmath.biModuloByRadixPower(x, this.k + 1);
    var r2term = $dmath.biMultiply(q3, this.modulus);
    var r2 = $dmath.biModuloByRadixPower(r2term, this.k + 1);
    var r = $dmath.biSubtract(r1, r2);
    if (r.isNeg) {
    r = $dmath.biAdd(r, this.bkplus1);
    }
    var rgtem = $dmath.biCompare(r, this.modulus) >= 0;
    while (rgtem) {
    r = $dmath.biSubtract(r, this.modulus);
    rgtem = $dmath.biCompare(r, this.modulus) >= 0;
    }
    return r;
    }

    function BarrettMu_multiplyMod(x, y) {
    /*
    x = this.modulo(x);
    y = this.modulo(y);
    */
    var xy = RSAUtils.biMultiply(x, y);
    return this.modulo(xy);
    }

    function BarrettMu_powMod(x, y) {
    var result = new BigInt();
    result.digits[0] = 1;
    var a = x;
    var k = y;
    while (true) {
    if ((k.digits[0] & 1) != 0) result = this.multiplyMod(result, a);
    k = RSAUtils.biShiftRight(k, 1);
    if (k.digits[0] == 0 && RSAUtils.biHighIndex(k) == 0) break;
    a = this.multiplyMod(a, a);
    }
    return result;
    }

    var RSAKeyPair = function(encryptionExponent, decryptionExponent, modulus) {
    var $dmath = RSAUtils;
    this.e = $dmath.biFromHex(encryptionExponent);
    this.d = $dmath.biFromHex(decryptionExponent);
    this.m = $dmath.biFromHex(modulus);
    // We can do two bytes per digit, so
    // chunkSize = 2 * (number of digits in modulus - 1).
    // Since biHighIndex returns the high index, not the number of digits, 1 has
    // already been subtracted.
    this.chunkSize = 2 * $dmath.biHighIndex(this.m);
    this.radix = 16;
    this.barrett = new $w.BarrettMu(this.m);
    };

    RSAUtils.getKeyPair = function(encryptionExponent, decryptionExponent, modulus) {
    return new RSAKeyPair(encryptionExponent, decryptionExponent, modulus);
    };

    if(typeof $w.twoDigit === 'undefined') {
    $w.twoDigit = function(n) {
    return (n < 10 ? "0" : "") + String(n);
    };
    }

    // Altered by Rob Saunders (rob@robsaunders.net). New routine pads the
    // string after it has been converted to an array. This fixes an
    // incompatibility with Flash MX's ActionScript.
    RSAUtils.encryptedString = function(key, s) {
    var a = [];
    var sl = s.length;
    var i = 0;
    while (i < sl) {
    a[i] = s.charCodeAt(i);
    i++;
    }

    while (a.length % key.chunkSize != 0) {
    a[i++] = 0;
    }

    var al = a.length;
    var result = "";
    var j, k, block;
    for (i = 0; i < al; i += key.chunkSize) {
    block = new BigInt();
    j = 0;
    for (k = i; k < i + key.chunkSize; ++j) {
    block.digits[j] = a[k++];
    block.digits[j] += a[k++] << 8;
    }
    var crypt = key.barrett.powMod(block, key.e);
    var text = key.radix == 16 ? RSAUtils.biToHex(crypt) : RSAUtils.biToString(crypt, key.radix);
    result += text + " ";
    }
    return result.substring(0, result.length - 1); // Remove last space.
    };

    RSAUtils.decryptedString = function(key, s) {
    var blocks = s.split(" ");
    var result = "";
    var i, j, block;
    for (i = 0; i < blocks.length; ++i) {
    var bi;
    if (key.radix == 16) {
    bi = RSAUtils.biFromHex(blocks[i]);
    }
    else {
    bi = RSAUtils.biFromString(blocks[i], key.radix);
    }
    block = key.barrett.powMod(bi, key.d);
    for (j = 0; j <= RSAUtils.biHighIndex(block); ++j) {
    result += String.fromCharCode(block.digits[j] & 255,
    block.digits[j] >> 8);
    }
    }
    // Remove trailing null, if any.
    if (result.charCodeAt(result.length - 1) == 0) {
    result = result.substring(0, result.length - 1);
    }
    return result;
    };

    RSAUtils.setMaxDigits(130);

    })(window);






      

  • 相关阅读:
    【NOI2015】品酒大会 SAM
    4566: [Haoi2016]找相同字符 SAM
    3709: [PA2014]Bohater 贪心
    1925: [Sdoi2010]地精部落 dp, 抖动子序列
    4205: 卡牌配对 最大流+建图技巧
    留言板
    self-introduction
    最近比赛
    STOI补番队胡策
    BZOJ 3503: [Cqoi2014]和谐矩阵( 高斯消元 )
  • 原文地址:https://www.cnblogs.com/hanyingme/p/3491877.html
Copyright © 2020-2023  润新知