1.0 有参装饰器的实现
def auth(db_type='file'):
def deco(func):
def wrapper(*args,**kwargs):
name = input("your name:").strip()
pwd = input("your password:").strip()
if db_type == 'file':
print("基于文件的验证")
if name == 'umi' and pwd == '123':
res=func(*args,**kwargs)
return res
else:
print('user or password error')
elif db_type == 'mysql':
print('基于mysql的验证')
elif db_type == 'ldap':
print('基于ldap的验证')
else:
print('不支持该db_type')
return wrapper
return deco
@auth(db_type='file')
def index():
print('welcome index')
@auth(db_type='mysql')
def home():
print('welcome home')
@auth(db_type='ldap')
def refier():
print('welcome index')
index()
home()
refier()
总结
# 无参装饰器模板
def outter(func):
def wrapper(*args,**kwargs):
# 1、调用原函数
# 2、为其增加新功能
res=func(*args,**kwargs)
return res
return wrapper
def index():
print('welcome index')
index()
# 偷梁换柱:即将原函数名指向的内存地址偷梁换柱成wrapper函数
# 所以应该将wrapper做的跟原函数一样才行
# 有参装饰器模板
def 有参装饰器(x,y,z):
def outter(func):
def wrapper(*args,**kwargs):
# 1、调用原函数
# 2、为其增加新功能
res=func(*args,**kwargs)
return res
return wrapper
return outter
@有参装饰器(1,y=2,z=3)
def index():
print('welcome index')
index()
1.1 迭代器
1、什么是迭代器
迭代器指的是迭代取值的工具,迭代是一个重复的过程,每次重复
都是基于上一次的结果而继续的,单纯的重复并不是迭代
2、为何要有迭代器
迭代器是用来迭代取值的工具,而涉及到把多个值循环取出来的类型
有:列表、字符串、元组、字典、集合、打开文件
l=['egon','liu','alex']
i=0
while i < len(l):
print(l[i])
i+=1
上述迭代取值的方式只适用于有索引的数据类型:列表、字符串、元组
为了解决基于索引迭代器取值的局限性
python必须提供一种能够不依赖于索引的取值方式,这就是迭代器
3、如何用迭代器
# 1、可迭代的对象:但凡内置有__iter__方法的都称之为可迭代的对象
# s1=''
# # s1.__iter__()
#
# l=[]
# # l.__iter__()
#
# t=(1,)
# # t.__iter__()
#
# d={'a':1}
# # d.__iter__()
#
# set1={1,2,3}
# # set1.__iter__()
#
# with open('a.txt',mode='w') as f:
# # f.__iter__()
# pass
# 2、调用可迭代对象下的__iter__方法会将其转换成迭代器对象
d={'a':1,'b':2,'c':3}
d_iterator=d.__iter__()
# print(d_iterator)
# print(d_iterator.__next__())
# print(d_iterator.__next__())
# print(d_iterator.__next__())
# print(d_iterator.__next__()) # 抛出异常StopIteration
# while True:
# try:
# print(d_iterator.__next__())
# except StopIteration:
# break
#
# print('====>>>>>>') # 在一个迭代器取值取干净的情况下,再对其取值娶不到
# d_iterator=d.__iter__()
# while True:
# try:
# print(d_iterator.__next__())
# except StopIteration:
# break
# l=[1,2,3,4,5]
# l_iterator=l.__iter__()
#
# while True:
# try:
# print(l_iterator.__next__())
# except StopIteration:
# break
# 3、可迭代对象与迭代器对象详解
# 3.1 可迭代对象("可以转换成迭代器的对象"):内置有__iter__方法对象
# 可迭代对象.__iter__(): 得到迭代器对象
# 3.2 迭代器对象:内置有__next__方法并且内置有__iter__方法的对象
# 迭代器对象.__next__():得到迭代器的下一个值
# 迭代器对象.__iter__():得到迭代器的本身,说白了调了跟没调一个样子
# dic={'a':1,'b':2,'c':3}
#
# dic_iterator=dic.__iter__()
# print(dic_iterator is dic_iterator.__iter__().__iter__().__iter__())
#
# 4、可迭代对象:字符串、列表、元组、字典、集合、文件对象
# 迭代器对象:文件对象
# s1=''
# s1.__iter__()
#
# l=[]
# l.__iter__()
#
# t=(1,)
# t.__iter__()
#
#
# d={'a':1}
# d.__iter__()
#
# set1={1,2,3}
# set1.__iter__()
#
#
# with open('a.txt',mode='w') as f:
# f.__iter__()
# f.__next__()
# 5、for循环的工作原理:for循环可以称之为叫迭代器循环
d={'a':1,'b':2,'c':3}
# 1、d.__iter__()得到一个迭代器对象
# 2、迭代器对象.__next__()拿到一个返回值,然后将该返回值赋值给k
# 3、循环往复步骤2,直到抛出StopIteration异常for循环会捕捉异常然后结束循环
# for k in d:
# print(k)
# with open('a.txt',mode='rt',encoding='utf-8') as f:
# for line in f: # f.__iter__()
# print(line)
# list('hello') #原理同for循环
# 6、迭代器优缺点总结
# 6.1 缺点:
# I、为序列和非序列类型提供了一种统一的迭代取值方式。
# II、惰性计算:迭代器对象表示的是一个数据流,可以只在需要时才去调用next来计算出一个值,就迭代器本身来说,同一时刻在内存中只有一个值,因而可以存放无限大的数据流,而对于其他容器类型,如列表,需要把所有的元素都存放于内存中,受内存大小的限制,可以存放的值的个数是有限的。
# 6.2 缺点:
# I、除非取尽,否则无法获取迭代器的长度
#
# II、只能取下一个值,不能回到开始,更像是‘一次性的’,迭代器产生后的唯一目标就是重复执行next方法直到值取尽,否则就会停留在某个位置,等待下一次调用next;若是要再次迭代同个对象,你只能重新调用iter方法去创建一个新的迭代器对象,如果有两个或者多个循环使用同一个迭代器,必然只会有一个循环能取到值。
1.1 生成器
1.生成器与yield
若函数体包含yield关键字,再调用函数,并不会执行函数体代码,得到的返回值即生成器对象
# 如何得到自定义的迭代器:
# 在函数内一旦存在yield关键字,调用函数并不会执行函数体代码
# 会返回一个生成器对象,生成器
def func():
print('第一次')
yield 1
print('第二次')
yield 2
print('第三次')
g = func()
print(g) # generator
# 生成器就是迭代器
g.__iter__()
g.__next__()
# 会触发函数体代码的运行,然后遇到yield停下来,将yield后的值当作本次调用的结果返回
res1 = g.__next__()
print(res1)
# 应用案例
# 需求:造一个能够产生无穷个值的数据类型
def my_range(start, stop, step=1):
# print('start...')
while start < stop:
start += step
yield start
# print('end...')
for n in my_range(1, 7, 2):
print(n)
# yield与return对比总结说明:
'''
函数调用函数体代码执行到yield时会返回yield后的值并将函数运行状态暂停在yield的位置
而return,当函数被调用时函数体代码运行到return时返回return后的值但是函数直接被结束掉了。
因此,return只能返回一次值,而yield可以返回多次值
'''