• 洛谷 P2401 不等数列


    其实有两种方法来解这道题

    第一种:找规律(非正经

    看图说话
    一看,这玩意像是个杨辉三角,还左右对称呢

    因为新插入一个数(n),有(n+1)个位置可以选,所以总数就乘(n+1),对应的(f[n+1][i])也就等于(f[n][i])了大概。可是一看,不大对,好像不是这样。那么就像,反正加一个数要么没变,要么加一个小于号,那么不在(f[n+1][i])的一定是分到了(f[n+1][i+1])里去了。那么以(n=3)时为例,(f[3][1]*4=4,f[4][1]=1)也就是接收了(1)倍的(f[3][1])。那么就有(3)个分到(f[4][2])里去了。(f[3][2]*4=16,f[4][2]=11),而(f[4][2])已经有(3)个,那么就接收了来自(f[4][2])(8)个,也就是(2)倍的(f[3][2])。······以此类推,大概就得出了(f[n+1][i]+=f[n][i]*(i+1),f[n+1][i+1]+=f[n][i]*(n-i))的规律

    -----------------------------------------------手动分割线------------------------------------------------

    第二种:数学方法推

    这是正经方法

    前面说过,加入一个数(n),有(n)+(1)个位置可以选,可以插在两旁或者不等号的位置,因为新插入的数一定是最大的,所以插在最左边多一个大于号,而插在最右边多一个小于号。

    那么问题来了,如果插在不等号的位置呢?

    首先,明确一下,插入在不等号位置后,一个不等号会变为两个不等号,由于新插入的数一定是最大的,所以这两个不等号中前面的一定是小于号,后面的一定是大于号。那么就很明显了,如果这个位置原来是小于号,那么插入(n)之后,小于号数不变;如果原来是大于号,那么插入(n)之后,小于号数+(1)。那么原本有(i)个数(j)个小于号,加上一个数后便会有(j+1)种小于号不变(i-j)种小于号(+1)的情况。

    上代码

    先是暴力版(通不过的,这是帮助我打出那张图的版本)

    #include<iostream>
    #include<cstdio>
    using namespace std;
    const int maxn=1005;
    int f[maxn],n,ans[maxn];
    bool s[maxn];
    void dfs(int step){
    	if(step>n){
    		int sum=0;
    		for(int i=1;i<n;i++)sum+=f[i]<f[i+1]?1:0;
    		ans[sum]++;
    		return;
    	}
    	for(int i=1;i<=n;i++)
    		if(!s[i]){
    			s[i]=1;
    			f[step]=i;
    			dfs(step+1);
    			s[i]=0;
    		}
    }
    int main(){
    	scanf("%d",&n);
    	dfs(1);
    	for(int i=0;i<n;i++)printf("%d ",ans[i]);
    }
    

    然后上

    正常版本

    #include<algorithm>
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    using namespace std;
    const int maxn=1005;
    int n,k,f[maxn][maxn];
    int main(){
    	//freopen("num.in","r",stdin);
    	//freopen("num.out","w",stdout);
    	scanf("%d%d",&n,&k);
    	if(k>(n-1)/2)k=n-k-1;
    	f[1][0]=1;
    	for(int i=1;i<n;i++){
    		for(int j=0;j<=(i-1)/2;j++){//由于它类似于杨辉三角,左右对称,所以只求左侧就好
    			f[i+1][j]=(f[i+1][j]+f[i][j]*(j+1))%2015;
    			f[i+1][j+1]=(f[i+1][j+1]+f[i][j]*(i-j))%2015;
    		}
    		if(i%2==0)f[i+1][i/2]=(f[i+1][i/2]*2)%2015;
    	}	
    	printf("%d",f[n][k]);
    	return 0;
    }
    

    不喜勿喷

    请勿抄袭

  • 相关阅读:
    int vs Integer
    贫民窟里的WPF系列讲座(一)
    微软虚拟化技术构建高效开发与测试环境(四)
    贫民窟里的WPF系列讲座(二)
    WPF的WEBCAST内容
    微软虚拟化技术构建高效开发与测试环境(三)
    微软虚拟化技术构建高效开发与测试环境(五)
    微软虚拟化技术构建高效开发与测试环境(二)
    手把手教用XNA开发winphone7游戏(一)
    手把手教用XNA开发winphone7游戏(二)
  • 原文地址:https://www.cnblogs.com/hanruyun/p/8585077.html
Copyright © 2020-2023  润新知