题目传送门
https://lydsy.com/JudgeOnline/problem.php?id=5049
题解
题面里面满眼的随机。既然数据完全随机,那就是在锻炼选手的乱搞能力啊。
根据一个常用的结论,一棵随机的树的深度不超过 (log n),大概等价于一个点期望下有 (2) 个孩子。
那么这个图中,以某个点为根的最短路树也应该满足。不妨设 (dis(u,v) = l),根据之前的结论,(l leq log n)。那么如果直接暴力 bfs 建最短路的话,需要遍历 (2^l = n) 个点。这样的情况可以使用双向 bfs,这样需要遍历的点就只有 (2cdot 2^{frac l2} = sqrt n) 个点。
代码如下,在期望情况下的时间复杂度为 (O(ksqrt n))。
#include<bits/stdc++.h>
#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back
template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;}
typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;
template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
}
const int N = 100000 + 7;
const int M = 300000 + 7;
int n, m, qq;
int fa[N], sz[N], q[N], vis[N], dis[N];
struct Edge { int to, ne; } g[M << 1]; int head[N], tot;
inline void addedge(int x, int y) { g[++tot].to = y, g[tot].ne = head[x], head[x] = tot; }
inline void adde(int x, int y) { addedge(x, y), addedge(y, x); }
inline int find(int x) { return fa[x] == x ? x : fa[x] = find(fa[x]); }
inline void merge(int x, int y) {
x = find(x), y = find(y);
if (sz[x] < sz[y]) std::swap(x, y);
fa[y] = x, smax(sz[x], sz[y] + 1);
}
inline int bfs(int s, int t) {
int hd = 0, tl = 0;
q[++tl] = s, vis[s] = 1, dis[s] = 0;
q[++tl] = t, vis[t] = -1, dis[t] = 0;
while (hd < tl) {
int x = q[++hd];
for fec(i, x, y) if (!vis[y]) dis[y] = dis[x] + 1, vis[y] = vis[x], q[++tl] = y;
else if (vis[y] != vis[x]) {
for (int i = 1; i <= tl; ++i) vis[q[i]] = 0;
return dis[x] + dis[y] + 1;
}
}
return -1;
}
inline void work() {
while (qq--) {
int x, y;
read(x), read(y);
if (find(x) != find(y)) puts("-1");
else printf("%d
", bfs(x, y));
}
}
inline void init() {
read(n), read(m), read(qq);
int x, y;
for (int i = 1; i <= n; ++i) fa[i] = i, sz[i] = 1;
for (int i = 1; i <= m; ++i) read(x), read(y), adde(x, y), merge(x, y);
}
int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}