• bzoj2325 [ZJOI2011]道馆之战 树链剖分+DP+类线段树最大字段和


    题目传送门

    https://lydsy.com/JudgeOnline/problem.php?id=2325

    题解

    可以参考线段树动态维护最大子段和的做法。

    对于线段树上每个节点 (o),维护 (ls_{0/1}, rs_{0/1}, s_{0/1, 0/1}) 分别表示从最左边的上面/下面的格子进入最多走的方块数量,从最右边的上面/下面的格子进入最多走的方块数量,从最左边的上面/下面到最右边的上面/下面的做多走的方块数量。

    然后合并的时候也类似与线段树最大字段和。(ls) 的话保留左子区间的,再和左子区间的 (s) 与右子区间的 (ls) 配合的结果取最优;(rs) 类似;(s) 的话直接把左右子区间的两个对应合并起来就可以了。

    树剖的时候可以剖出来两段从上到下的结果,然后把一段取反(左右颠倒)以后类似于上面的方法合并就可以了。


    时间复杂度 (O(mlog^2n))

    #include<bits/stdc++.h>
    
    #define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
    #define dbg(...) fprintf(stderr, __VA_ARGS__)
    #define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
    #define fi first
    #define se second
    #define pb push_back
    
    template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
    template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;}
    
    typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;
    
    template<typename I> inline void read(I &x) {
    	int f = 0, c;
    	while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
    	x = c & 15;
    	while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
    	f ? x = -x : 0;
    }
    
    #define lc o << 1
    #define rc o << 1 | 1
    
    const int N = 30000 + 7;
    const int INF = 0x3f3f3f3f;
    
    int n, m, dfc, cnt;
    char a[N][3];
    int dep[N], f[N], siz[N], son[N], dfn[N], pre[N], top[N];
    
    struct Edge { int to, ne; } g[N << 1]; int head[N], tot;
    inline void addedge(int x, int y) { g[++tot].to = y, g[tot].ne = head[x], head[x] = tot; }
    inline void adde(int x, int y) { addedge(x, y), addedge(y, x); }
    
    inline void dfs1(int x, int fa = 0) {
    	dep[x] = dep[fa] + 1, f[x] = fa, siz[x] = 1;
    	for fec(i, x, y) if (y != fa) dfs1(y, x), siz[x] += siz[y], siz[y] > siz[son[x]] && (son[x] = y);
    }
    inline void dfs2(int x, int pa) {
    	dfn[x] = ++dfc, pre[dfc] = x, top[x] = pa;
    	if (!son[x]) return; dfs2(son[x], pa);
    	for fec(i, x, y) if (y != f[x] && y != son[x]) dfs2(y, y);
    }
    
    struct Node {
    	int ls[2], rs[2], s[2][2];
    	
    	inline Node() { ls[0] = ls[1] = rs[0] = rs[1] = s[0][0] = s[0][1] = s[1][0] = s[1][1] = 0; }
    	inline Node(char *a) {
    		ls[0] = ls[1] = rs[0] = rs[1] = s[0][0] = s[0][1] = s[1][0] = s[1][1] = 0;
    		if (a[0]) ++ls[0], ++rs[0], s[0][0] = 1; else s[0][1] = s[0][0] = s[1][0] = -INF;
    		if (a[1]) ++ls[1], ++rs[1], s[1][1] = 1; else s[1][0] = s[1][1] = s[0][1] = -INF;
    		if (s[0][1] != -INF) s[0][1] = s[1][0] = 2;
    	}
    } t[N << 2];
    
    inline Node operator + (const Node &a, const Node &b) {
    	Node ans;
    	ans.ls[0] = std::max(a.ls[0], std::max(a.s[0][0] + b.ls[0], a.s[0][1] + b.ls[1]));
    	ans.ls[1] = std::max(a.ls[1], std::max(a.s[1][0] + b.ls[0], a.s[1][1] + b.ls[1]));
    	ans.rs[0] = std::max(b.rs[0], std::max(a.rs[0] + b.s[0][0], a.rs[1] + b.s[1][0]));
    	ans.rs[1] = std::max(b.rs[1], std::max(a.rs[0] + b.s[0][1], a.rs[1] + b.s[1][1]));
    	ans.s[0][0] = std::max(a.s[0][0] + b.s[0][0], a.s[0][1] + b.s[1][0]), smax(ans.s[0][0], -INF);
    	ans.s[0][1] = std::max(a.s[0][0] + b.s[0][1], a.s[0][1] + b.s[1][1]), smax(ans.s[0][1], -INF);
    	ans.s[1][0] = std::max(a.s[1][0] + b.s[0][0], a.s[1][1] + b.s[1][0]), smax(ans.s[1][0], -INF);
    	ans.s[1][1] = std::max(a.s[1][0] + b.s[0][1], a.s[1][1] + b.s[1][1]), smax(ans.s[1][1], -INF);
    	return ans;
    }
    inline Node operator - (const Node &a) {
    	Node ans = a;
    	std::swap(ans.ls[0], ans.rs[0]), std::swap(ans.ls[1], ans.rs[1]);
    	std::swap(ans.s[0][1], ans.s[1][0]);
    	return ans;
    }
    
    inline void build(int o, int L, int R) {
    	if (L == R) return t[o] = Node(a[pre[L]]), (void)0;
    	int M = (L + R) >> 1;
    	build(lc, L, M), build(rc, M + 1, R);
    	t[o] = t[lc] + t[rc];
    	return;
    }
    inline void qupd(int o, int L, int R, int x) {
    	if (L == R) return t[o] = Node(a[pre[L]]), (void)0;
    	int M = (L + R) >> 1;
    	if (x <= M) qupd(lc, L, M, x);
    	else qupd(rc, M + 1, R, x);
    	t[o] = t[lc] + t[rc];
    }
    inline Node qsum(int o, int L, int R, int l, int r) {
    	if (l <= L && R <= r) return t[o];
    	int M = (L + R) >> 1;
    	if (r <= M) return qsum(lc, L, M, l, r);
    	if (l > M) return qsum(rc, M + 1, R, l, r);
    	return qsum(lc, L, M, l, r) + qsum(rc, M + 1, R, l, r);
    }
    
    inline int qry(int x, int y) {
    	Node ans1, ans2;
    	while (top[x] != top[y]) {
    		if (dep[top[x]] > dep[top[y]]) {
    			ans1 = qsum(1, 1, n, dfn[top[x]], dfn[x]) + ans1;
    			x = f[top[x]];
    		} else {
    			ans2 = qsum(1, 1, n, dfn[top[y]], dfn[y]) + ans2;
    			y = f[top[y]];
    		}
    	}
    	if (dep[x] > dep[y]) ans1 = qsum(1, 1, n, dfn[y], dfn[x]) + ans1;
    	else ans2 = qsum(1, 1, n, dfn[x], dfn[y]) + ans2;
    	ans2 = -ans1 + ans2;
    	return std::max(ans2.ls[0], ans2.ls[1]);
    }
    
    inline void work() {
    	dfs1(1), dfs2(1, 1), build(1, 1, n);
    	for (int i = 1; i <= m; ++i) {
    		char opt[5];
    		int x, y;
    		scanf("%s", opt);
    		if (*opt == 'Q') read(x), read(y), printf("%d
    ", qry(x, y));
    		else read(x), scanf("%s", a[x]), a[x][0] = a[x][0] == '.', a[x][1] = a[x][1] == '.', qupd(1, 1, n, dfn[x]);
    	}
    }
    
    inline void init() {
    	read(n), read(m);
    	int x, y;
    	for (int i = 1; i < n; ++i) read(x), read(y), adde(x, y);
    	for (int i = 1; i <= n; ++i) scanf("%s", a[i]), a[i][0] = a[i][0] == '.', a[i][1] = a[i][1] == '.';
    }
    
    int main() {
    #ifdef hzhkk
    	freopen("hkk.in", "r", stdin);
    #endif
    	init();
    	work();
    	fclose(stdin), fclose(stdout);
    	return 0;
    }
    
    
  • 相关阅读:
    ORA-00119: invalid specification for system parameter LOCAL_LISTENER
    local_listener参数的作用!
    DDL为什么不能rollback?
    LGWR和DBWn的触发条件
    修改spfile位置
    初识oracle重做日志文件
    ORACLE AUDIT 审计
    Oracle SQL_TRACE使用小结
    Web API(六):使用Autofac实现依赖注入
    JavaScript:属性的操作
  • 原文地址:https://www.cnblogs.com/hankeke/p/bzoj2325.html
Copyright © 2020-2023  润新知