一切从示例程序开始:
示例程序
Hadoop2.7 提供的示例程序WordCount.java
package org.apache.hadoop.examples; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class WordCount { //继承泛型类Mapper public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ //定义hadoop数据类型IntWritable实例one,并且赋值为1 private final static IntWritable one = new IntWritable(1); //定义hadoop数据类型Text实例word private Text word = new Text(); //实现map函数 public void map(Object key, Text value, Context context ) throws IOException, InterruptedException { //Java的字符串分解类,默认分隔符“空格”、“制表符(‘\t’)”、“换行符(‘\n’)”、“回车符(‘\r’)” StringTokenizer itr = new StringTokenizer(value.toString()); //循环条件表示返回是否还有分隔符。 while (itr.hasMoreTokens()) { /* nextToken():返回从当前位置到下一个分隔符的字符串 word.set()Java数据类型与hadoop数据类型转换 */ word.set(itr.nextToken()); //hadoop全局类context输出函数write; context.write(word, one); } } } //继承泛型类Reducer public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> { //实例化IntWritable private IntWritable result = new IntWritable(); //实现reduce public void reduce(Text key, Iterable<IntWritable> values, Context context ) throws IOException, InterruptedException { int sum = 0; //循环values,并记录单词个数 for (IntWritable val : values) { sum += val.get(); } //Java数据类型sum,转换为hadoop数据类型result result.set(sum); //输出结果到hdfs context.write(key, result); } } public static void main(String[] args) throws Exception { //实例化Configuration Configuration conf = new Configuration(); /* GenericOptionsParser是hadoop框架中解析命令行参数的基本类。 getRemainingArgs();返回数组【一组路径】 */ /* 函数实现 public String[] getRemainingArgs() { return (commandLine == null) ? new String[]{} : commandLine.getArgs(); }*/ String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); //如果只有一个路径,则输出需要有输入路径和输出路径 if (otherArgs.length < 2) { System.err.println("Usage: wordcount <in> [<in>...] <out>"); System.exit(2); } //实例化job Job job = Job.getInstance(conf, "word count"); job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class); /* 指定CombinerClass类 这里很多人对CombinerClass不理解 */ job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); //rduce输出Key的类型,是Text job.setOutputKeyClass(Text.class); // rduce输出Value的类型 job.setOutputValueClass(IntWritable.class); //添加输入路径 for (int i = 0; i < otherArgs.length - 1; ++i) { FileInputFormat.addInputPath(job, new Path(otherArgs[i])); } //添加输出路径 FileOutputFormat.setOutputPath(job, new Path(otherArgs[otherArgs.length - 1])); //提交job System.exit(job.waitForCompletion(true) ? 0 : 1); } }
1.Mapper
将输入的键值对映射到一组中间的键值对。
映射将独立的任务的输入记录转换成中间的记录。装好的中间记录不需要和输入记录保持同一种类型。一个给定的输入对可以映射成0个或者多个输出对。
Hadoop Map-Reduce框架为每个job产生的输入格式(InputFormat)的InputSplit产生一个映射task。Mapper实现类通过JobConfigurable#configure(JobConf)获取job的JobConf,并初始化自己。类似的,它们使用Closeable#close()方法消耗初始化。
然后,框架为该任务的InputSplit中的每个键值对调用map(Object, Object, OutputCollector, Reporter)方法。
所有关联到给定输出的中间值随后由框架分组,并传到Reducer来确定最终的输出。用户可通过指定一个比较器Compator来控制分组,Compator的指定通过JobConf#setOutputKeyComparatorClass(Class)完成。
分组的Mapper输出每个Reducer一个分区。用户可以通过实现自定义的分区来控制哪些键(和记录)到哪个Reducer。
用户可以选择指定一个Combiner,通过JobConf#setCombinerClass(Class),来执行本地中间输出的聚合,它可以帮助减少数据从Mapper到Reducer数据转换的数量。
中间、分组的输出保存在SequeceFile文件中,应用可以指定中间输出是否和怎么样压缩,压缩算法可以通过JobConf来设置CompressionCodec。
若job没有reducer,Mapper的输出直接写到FileSystem,而不会根据键分组。
示例:
public class MyMapper<K extends WritableComparable, V extends Writable> extends MapReduceBase implements Mapper<K, V, K, V> { static enum MyCounters { NUM_RECORDS } private String mapTaskId; private String inputFile; private int noRecords = 0; public void configure(JobConf job) { mapTaskId = job.get(JobContext.TASK_ATTEMPT_ID); inputFile = job.get(JobContext.MAP_INPUT_FILE); } public void map(K key, V val, OutputCollector<K, V> output, Reporter reporter) throws IOException { // Process the <key, value> pair (assume this takes a while) // ... // ... // Let the framework know that we are alive, and kicking! // reporter.progress(); // Process some more // ... // ... // Increment the no. of <key, value> pairs processed ++noRecords; // Increment counters reporter.incrCounter(NUM_RECORDS, 1); // Every 100 records update application-level status if ((noRecords%100) == 0) { reporter.setStatus(mapTaskId + " processed " + noRecords + " from input-file: " + inputFile); } // Output the result output.collect(key, val); } }
上述应用自定义一个MapRunnable来对map处理过程进行更多的控制:如多线程Mapper等等。
或者示例:
public class TokenCounterMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } }
应用可以重新(org.apache.hadoop.mapreduce.Mapper.Context)的run方法来来对映射处理进行更精确的控制,例如多线程的Mapper等等。
Mapper的方法:
void map(K1 key, V1 value, OutputCollector<K2, V2> output, Reporter reporter) throws IOException;
该方法将一个单独的键值对输入映射成一个中间键值对。
输出键值对不需要和输入键值对的类型保持一致,一个给定的数据键值对可以映射到0个或者多个输出键值对。输出键值对可以通过OutputCollector#collect(Object,Object)获得的。
应用可以使用Reporter提供处理报告或者仅仅是标示它们的存活。在一个应用需要相当多的时间来处理单独的键值对的场景中,Report就非常重要了,因为框架可能认为task已经超期,并杀死那个task。避免这种情况的办法是设置mapreduce.task.timeout到一个足够大的值(或者设置为0表示永远不会超时)。
mapper的层次结构:
2.Reducer
将一组共享一个键的中间值减少到一小组值。
用户通过JobConf#setNumReducerTask(int)方法来设置job的Reducer的数目。Reducer的实现类通过JobConfigurable#configure(JobConf)方法来获取job,并初始化它们。类似的,可通过Closeable#close()方法来消耗初始化。
Reducer有是3个主要阶段:
第一阶段:洗牌,Reducer的输入是Mapper的分组输出。在这个阶段,每个Reducer通过http获取所有Mapper的相关分区的输出。
第二阶段:排序,在这个阶段,框架根据键(因不同的Mapper可能产生相同的Key)将Reducer进行分组。洗牌和排序阶段是同步发生的,例如:当取出输出时,将合并它们。
二次排序,若分组中间值等价的键规则和reduce之前键分组的规则不同时,那么其中之一可以通过JobConf#setOutputValueGroupingComparator(Class)来指定一个Comparator。
JobConf#setOutputKeyComparatorClass(Class)可以用来控制中间键分组,可以用在模拟二次排序的值连接中。
示例:若你想找出重复的web网页,并将他们全部标记为“最佳”网址的示例。你可以这样创建job:
Map输入的键:url
Map输入的值:document
Map输出的键:document checksum,url pagerank
Map输出的值:url
分区:通过checksum
输出键比较器:通过checksum,然后是pagerank降序。
输出值分组比较器:通过checksum
Reduce
在此阶段,为在分组书中的每个<key,value数组>对调用reduce(Object, Iterator, OutputCollector, Reporter)方法。
reduce task的输出通常写到写到文件系统中,方法是:OutputCollector#collect(Object, Object)。
Reducer的输出结果没有重新排序。
示例:
public class MyReducer<K extends WritableComparable, V extends Writable> extends MapReduceBase implements Reducer<K, V, K, V> { static enum MyCounters { NUM_RECORDS } private String reduceTaskId; private int noKeys = 0; public void configure(JobConf job) { reduceTaskId = job.get(JobContext.TASK_ATTEMPT_ID); } public void reduce(K key, Iterator<V> values, OutputCollector<K, V> output, Reporter reporter) throws IOException { // Process int noValues = 0; while (values.hasNext()) { V value = values.next(); // Increment the no. of values for this key ++noValues; // Process the <key, value> pair (assume this takes a while) // ... // ... // Let the framework know that we are alive, and kicking! if ((noValues%10) == 0) { reporter.progress(); } // Process some more // ... // ... // Output the <key, value> output.collect(key, value); } // Increment the no. of <key, list of values> pairs processed ++noKeys; // Increment counters reporter.incrCounter(NUM_RECORDS, 1); // Every 100 keys update application-level status if ((noKeys%100) == 0) { reporter.setStatus(reduceTaskId + " processed " + noKeys); } } }
下图来源:http://x-rip.iteye.com/blog/1541914
3. Job
3.1 上述示例程序最关键的一句:job.waitForCompletion(true)
/** * Submit the job to the cluster and wait for it to finish. * @param verbose print the progress to the user * @return true if the job succeeded * @throws IOException thrown if the communication with the * <code>JobTracker</code> is lost */ public boolean waitForCompletion(boolean verbose ) throws IOException, InterruptedException, ClassNotFoundException { if (state == JobState.DEFINE) { submit(); } if (verbose) { monitorAndPrintJob(); } else { // get the completion poll interval from the client. int completionPollIntervalMillis = Job.getCompletionPollInterval(cluster.getConf()); while (!isComplete()) { try { Thread.sleep(completionPollIntervalMillis); } catch (InterruptedException ie) { } } } return isSuccessful(); }
3.2 提交的过程
/** * Submit the job to the cluster and return immediately. * @throws IOException */ public void submit() throws IOException, InterruptedException, ClassNotFoundException { ensureState(JobState.DEFINE); setUseNewAPI(); connect(); final JobSubmitter submitter = getJobSubmitter(cluster.getFileSystem(), cluster.getClient()); status = ugi.doAs(new PrivilegedExceptionAction<JobStatus>() { public JobStatus run() throws IOException, InterruptedException, ClassNotFoundException { return submitter.submitJobInternal(Job.this, cluster); } }); state = JobState.RUNNING; LOG.info("The url to track the job: " + getTrackingURL()); }
连接过程:
private synchronized void connect() throws IOException, InterruptedException, ClassNotFoundException { if (cluster == null) { cluster = ugi.doAs(new PrivilegedExceptionAction<Cluster>() { public Cluster run() throws IOException, InterruptedException, ClassNotFoundException { return new Cluster(getConfiguration()); } }); } }
其中,
ugi定义在JobContextImpl.java中:
/**
* The UserGroupInformation object that has a reference to the current user
*/
protected UserGroupInformation ugi;
Cluster类提供了一个访问map/reduce集群的接口:
public static enum JobTrackerStatus {INITIALIZING, RUNNING}; private ClientProtocolProvider clientProtocolProvider; private ClientProtocol client; private UserGroupInformation ugi; private Configuration conf; private FileSystem fs = null; private Path sysDir = null; private Path stagingAreaDir = null; private Path jobHistoryDir = null;
4. JobSubmitter
/** * Internal method for submitting jobs to the system. * * <p>The job submission process involves: * <ol> * <li> * Checking the input and output specifications of the job. * </li> * <li> * Computing the {@link InputSplit}s for the job. * </li> * <li> * Setup the requisite accounting information for the * {@link DistributedCache} of the job, if necessary. * </li> * <li> * Copying the job's jar and configuration to the map-reduce system * directory on the distributed file-system. * </li> * <li> * Submitting the job to the <code>JobTracker</code> and optionally * monitoring it's status. * </li> * </ol></p> * @param job the configuration to submit * @param cluster the handle to the Cluster * @throws ClassNotFoundException * @throws InterruptedException * @throws IOException */ JobStatus submitJobInternal(Job job, Cluster cluster) throws ClassNotFoundException, InterruptedException, IOException { //validate the jobs output specs checkSpecs(job); Configuration conf = job.getConfiguration(); addMRFrameworkToDistributedCache(conf); Path jobStagingArea = JobSubmissionFiles.getStagingDir(cluster, conf); //configure the command line options correctly on the submitting dfs InetAddress ip = InetAddress.getLocalHost(); if (ip != null) { submitHostAddress = ip.getHostAddress(); submitHostName = ip.getHostName(); conf.set(MRJobConfig.JOB_SUBMITHOST,submitHostName); conf.set(MRJobConfig.JOB_SUBMITHOSTADDR,submitHostAddress); } JobID jobId = submitClient.getNewJobID(); job.setJobID(jobId); Path submitJobDir = new Path(jobStagingArea, jobId.toString()); JobStatus status = null; try { conf.set(MRJobConfig.USER_NAME, UserGroupInformation.getCurrentUser().getShortUserName()); conf.set("hadoop.http.filter.initializers", "org.apache.hadoop.yarn.server.webproxy.amfilter.AmFilterInitializer"); conf.set(MRJobConfig.MAPREDUCE_JOB_DIR, submitJobDir.toString()); LOG.debug("Configuring job " + jobId + " with " + submitJobDir + " as the submit dir"); // get delegation token for the dir TokenCache.obtainTokensForNamenodes(job.getCredentials(), new Path[] { submitJobDir }, conf); populateTokenCache(conf, job.getCredentials()); // generate a secret to authenticate shuffle transfers if (TokenCache.getShuffleSecretKey(job.getCredentials()) == null) { KeyGenerator keyGen; try { int keyLen = CryptoUtils.isShuffleEncrypted(conf) ? conf.getInt(MRJobConfig.MR_ENCRYPTED_INTERMEDIATE_DATA_KEY_SIZE_BITS, MRJobConfig.DEFAULT_MR_ENCRYPTED_INTERMEDIATE_DATA_KEY_SIZE_BITS) : SHUFFLE_KEY_LENGTH; keyGen = KeyGenerator.getInstance(SHUFFLE_KEYGEN_ALGORITHM); keyGen.init(keyLen); } catch (NoSuchAlgorithmException e) { throw new IOException("Error generating shuffle secret key", e); } SecretKey shuffleKey = keyGen.generateKey(); TokenCache.setShuffleSecretKey(shuffleKey.getEncoded(), job.getCredentials()); } copyAndConfigureFiles(job, submitJobDir); Path submitJobFile = JobSubmissionFiles.getJobConfPath(submitJobDir); // Create the splits for the job LOG.debug("Creating splits at " + jtFs.makeQualified(submitJobDir)); int maps = writeSplits(job, submitJobDir); conf.setInt(MRJobConfig.NUM_MAPS, maps); LOG.info("number of splits:" + maps); // write "queue admins of the queue to which job is being submitted" // to job file. String queue = conf.get(MRJobConfig.QUEUE_NAME, JobConf.DEFAULT_QUEUE_NAME); AccessControlList acl = submitClient.getQueueAdmins(queue); conf.set(toFullPropertyName(queue, QueueACL.ADMINISTER_JOBS.getAclName()), acl.getAclString()); // removing jobtoken referrals before copying the jobconf to HDFS // as the tasks don't need this setting, actually they may break // because of it if present as the referral will point to a // different job. TokenCache.cleanUpTokenReferral(conf); if (conf.getBoolean( MRJobConfig.JOB_TOKEN_TRACKING_IDS_ENABLED, MRJobConfig.DEFAULT_JOB_TOKEN_TRACKING_IDS_ENABLED)) { // Add HDFS tracking ids ArrayList<String> trackingIds = new ArrayList<String>(); for (Token<? extends TokenIdentifier> t : job.getCredentials().getAllTokens()) { trackingIds.add(t.decodeIdentifier().getTrackingId()); } conf.setStrings(MRJobConfig.JOB_TOKEN_TRACKING_IDS, trackingIds.toArray(new String[trackingIds.size()])); } // Set reservation info if it exists ReservationId reservationId = job.getReservationId(); if (reservationId != null) { conf.set(MRJobConfig.RESERVATION_ID, reservationId.toString()); } // Write job file to submit dir writeConf(conf, submitJobFile); // // Now, actually submit the job (using the submit name) // printTokens(jobId, job.getCredentials()); status = submitClient.submitJob( jobId, submitJobDir.toString(), job.getCredentials()); if (status != null) { return status; } else { throw new IOException("Could not launch job"); } } finally { if (status == null) { LOG.info("Cleaning up the staging area " + submitJobDir); if (jtFs != null && submitJobDir != null) jtFs.delete(submitJobDir, true); } } }
上面所说,job的提交有如下过程:
1. 检查job的输入/输出规范
2. 计算job的InputSplit
3. 如需要,计算job的DistributedCache所需要的前置计算信息
4. 复制job的jar和配置文件到分布式文件系统的map-reduce系统目录
5. 提交job到JobTracker,还可以监视job的执行状态。
若当前JobClient (0.22 hadoop) 运行在YARN.则job提交任务运行在YARNRunner
Hadoop Yarn 框架原理及运作机制
主要步骤
- 作业提交
- 作业初始化
- 资源申请与任务分配
- 任务执行
具体步骤
在运行作业之前,Resource Manager和Node Manager都已经启动,所以在上图中,Resource Manager进程和Node Manager进程不需要启动
- 1. 客户端进程通过runJob(实际中一般使用waitForCompletion提交作业)在客户端提交Map Reduce作业(在Yarn中,作业一般称为Application应用程序)
- 2. 客户端向Resource Manager申请应用程序ID(application id),作为本次作业的唯一标识
- 3. 客户端程序将作业相关的文件(通常是指作业本身的jar包以及这个jar包依赖的第三方的jar),保存到HDFS上。也就是说Yarn based MR通过HDFS共享程序的jar包,供Task进程读取
- 4. 客户端通过runJob向ResourceManager提交应用程序
- 5.a/5.b. Resource Manager收到来自客户端的提交作业请求后,将请求转发给作业调度组件(Scheduler),Scheduler分配一个Container,然后Resource Manager在这个Container中启动Application Master进程,并交由Node Manager对Application Master进程进行管理
- 6. Application Master初始化作业(应用程序),初始化动作包括创建监听对象以监听作业的执行情况,包括监听任务汇报的任务执行进度以及是否完成(不同的计算框架为集成到YARN资源调度框架中,都要提供不同的ApplicationMaster,比如Spark、Storm框架为了运行在Yarn之上,它们都提供了ApplicationMaster)
- 7. Application Master根据作业代码中指定的数据地址(数据源一般来自HDFS)进行数据分片,以确定Mapper任务数,具体每个Mapper任务发往哪个计算节点,Hadoop会考虑数据本地性,本地数据本地性、本机架数据本地性以及最后跨机架数据本地性)。同时还会计算Reduce任务数,Reduce任务数是在程序代码中指定的,通过job.setNumReduceTask显式指定的
- 8.如下几点是Application Master向Resource Manager申请资源的细节
- 8.1 Application Master根据数据分片确定的Mapper任务数以及Reducer任务数向Resource Manager申请计算资源(计算资源主要指的是内存和CPU,在Hadoop Yarn中,使用Container这个概念来描述计算单位,即计算资源是以Container为单位的,一个Container包含一定数量的内存和CPU内核数)。
- 8.2 Application Master是通过向Resource Manager发送Heart Beat心跳包进行资源申请的,申请时,请求中还会携带任务的数据本地性等信息,使得Resource Manager在分配资源时,不同的Task能够分配到的计算资源尽可能满足数据本地性
- 8.3 Application Master向Resource Manager资源申请时,还会携带内存数量信息,默认情况下,Map任务和Reduce任务都会分陪1G内存,这个值是可以通过参数mapreduce.map.memory.mb and mapreduce.reduce.memory.mb进行修改。
5. YARNRunner
@Override public JobStatus submitJob(JobID jobId, String jobSubmitDir, Credentials ts) throws IOException, InterruptedException { addHistoryToken(ts); // Construct necessary information to start the MR AM ApplicationSubmissionContext appContext = createApplicationSubmissionContext(conf, jobSubmitDir, ts); // Submit to ResourceManager try { ApplicationId applicationId = resMgrDelegate.submitApplication(appContext); ApplicationReport appMaster = resMgrDelegate .getApplicationReport(applicationId); String diagnostics = (appMaster == null ? "application report is null" : appMaster.getDiagnostics()); if (appMaster == null || appMaster.getYarnApplicationState() == YarnApplicationState.FAILED || appMaster.getYarnApplicationState() == YarnApplicationState.KILLED) { throw new IOException("Failed to run job : " + diagnostics); } return clientCache.getClient(jobId).getJobStatus(jobId); } catch (YarnException e) { throw new IOException(e); } }
调用YarnClient的submitApplication()方法,其实现如下:
6. YarnClientImpl
@Override public ApplicationId submitApplication(ApplicationSubmissionContext appContext) throws YarnException, IOException { ApplicationId applicationId = appContext.getApplicationId(); if (applicationId == null) { throw new ApplicationIdNotProvidedException( "ApplicationId is not provided in ApplicationSubmissionContext"); } SubmitApplicationRequest request = Records.newRecord(SubmitApplicationRequest.class); request.setApplicationSubmissionContext(appContext); // Automatically add the timeline DT into the CLC // Only when the security and the timeline service are both enabled if (isSecurityEnabled() && timelineServiceEnabled) { addTimelineDelegationToken(appContext.getAMContainerSpec()); } //TODO: YARN-1763:Handle RM failovers during the submitApplication call. rmClient.submitApplication(request); int pollCount = 0; long startTime = System.currentTimeMillis(); EnumSet<YarnApplicationState> waitingStates = EnumSet.of(YarnApplicationState.NEW, YarnApplicationState.NEW_SAVING, YarnApplicationState.SUBMITTED); EnumSet<YarnApplicationState> failToSubmitStates = EnumSet.of(YarnApplicationState.FAILED, YarnApplicationState.KILLED); while (true) { try { ApplicationReport appReport = getApplicationReport(applicationId); YarnApplicationState state = appReport.getYarnApplicationState(); if (!waitingStates.contains(state)) { if(failToSubmitStates.contains(state)) { throw new YarnException("Failed to submit " + applicationId + " to YARN : " + appReport.getDiagnostics()); } LOG.info("Submitted application " + applicationId); break; } long elapsedMillis = System.currentTimeMillis() - startTime; if (enforceAsyncAPITimeout() && elapsedMillis >= asyncApiPollTimeoutMillis) { throw new YarnException("Timed out while waiting for application " + applicationId + " to be submitted successfully"); } // Notify the client through the log every 10 poll, in case the client // is blocked here too long. if (++pollCount % 10 == 0) { LOG.info("Application submission is not finished, " + "submitted application " + applicationId + " is still in " + state); } try { Thread.sleep(submitPollIntervalMillis); } catch (InterruptedException ie) { LOG.error("Interrupted while waiting for application " + applicationId + " to be successfully submitted."); } } catch (ApplicationNotFoundException ex) { // FailOver or RM restart happens before RMStateStore saves // ApplicationState LOG.info("Re-submit application " + applicationId + "with the " + "same ApplicationSubmissionContext"); rmClient.submitApplication(request); } } return applicationId; }
7. ClientRMService
ClientRMService是resource manager的客户端接口。这个模块处理从客户端到resource mananger的rpc接口。
@Override public SubmitApplicationResponse submitApplication( SubmitApplicationRequest request) throws YarnException { ApplicationSubmissionContext submissionContext = request .getApplicationSubmissionContext(); ApplicationId applicationId = submissionContext.getApplicationId(); // ApplicationSubmissionContext needs to be validated for safety - only // those fields that are independent of the RM's configuration will be // checked here, those that are dependent on RM configuration are validated // in RMAppManager. String user = null; try { // Safety user = UserGroupInformation.getCurrentUser().getShortUserName(); } catch (IOException ie) { LOG.warn("Unable to get the current user.", ie); RMAuditLogger.logFailure(user, AuditConstants.SUBMIT_APP_REQUEST, ie.getMessage(), "ClientRMService", "Exception in submitting application", applicationId); throw RPCUtil.getRemoteException(ie); } // Check whether app has already been put into rmContext, // If it is, simply return the response if (rmContext.getRMApps().get(applicationId) != null) { LOG.info("This is an earlier submitted application: " + applicationId); return SubmitApplicationResponse.newInstance(); } if (submissionContext.getQueue() == null) { submissionContext.setQueue(YarnConfiguration.DEFAULT_QUEUE_NAME); } if (submissionContext.getApplicationName() == null) { submissionContext.setApplicationName( YarnConfiguration.DEFAULT_APPLICATION_NAME); } if (submissionContext.getApplicationType() == null) { submissionContext .setApplicationType(YarnConfiguration.DEFAULT_APPLICATION_TYPE); } else { if (submissionContext.getApplicationType().length() > YarnConfiguration.APPLICATION_TYPE_LENGTH) { submissionContext.setApplicationType(submissionContext .getApplicationType().substring(0, YarnConfiguration.APPLICATION_TYPE_LENGTH)); } } try { // call RMAppManager to submit application directly rmAppManager.submitApplication(submissionContext, System.currentTimeMillis(), user); LOG.info("Application with id " + applicationId.getId() + " submitted by user " + user); RMAuditLogger.logSuccess(user, AuditConstants.SUBMIT_APP_REQUEST, "ClientRMService", applicationId); } catch (YarnException e) { LOG.info("Exception in submitting application with id " + applicationId.getId(), e); RMAuditLogger.logFailure(user, AuditConstants.SUBMIT_APP_REQUEST, e.getMessage(), "ClientRMService", "Exception in submitting application", applicationId); throw e; } SubmitApplicationResponse response = recordFactory .newRecordInstance(SubmitApplicationResponse.class); return response; }
调用RMAppManager来直接提交application
@SuppressWarnings("unchecked") protected void submitApplication( ApplicationSubmissionContext submissionContext, long submitTime, String user) throws YarnException { ApplicationId applicationId = submissionContext.getApplicationId(); RMAppImpl application = createAndPopulateNewRMApp(submissionContext, submitTime, user); ApplicationId appId = submissionContext.getApplicationId(); if (UserGroupInformation.isSecurityEnabled()) { try { this.rmContext.getDelegationTokenRenewer().addApplicationAsync(appId, parseCredentials(submissionContext), submissionContext.getCancelTokensWhenComplete(), application.getUser()); } catch (Exception e) { LOG.warn("Unable to parse credentials.", e); // Sending APP_REJECTED is fine, since we assume that the // RMApp is in NEW state and thus we haven't yet informed the // scheduler about the existence of the application assert application.getState() == RMAppState.NEW; this.rmContext.getDispatcher().getEventHandler() .handle(new RMAppRejectedEvent(applicationId, e.getMessage())); throw RPCUtil.getRemoteException(e); } } else { // Dispatcher is not yet started at this time, so these START events // enqueued should be guaranteed to be first processed when dispatcher // gets started. this.rmContext.getDispatcher().getEventHandler() .handle(new RMAppEvent(applicationId, RMAppEventType.START)); } }
8.RMAppManager
@SuppressWarnings("unchecked") protected void submitApplication( ApplicationSubmissionContext submissionContext, long submitTime, String user) throws YarnException { ApplicationId applicationId = submissionContext.getApplicationId(); RMAppImpl application = createAndPopulateNewRMApp(submissionContext, submitTime, user); ApplicationId appId = submissionContext.getApplicationId(); if (UserGroupInformation.isSecurityEnabled()) { try { this.rmContext.getDelegationTokenRenewer().addApplicationAsync(appId, parseCredentials(submissionContext), submissionContext.getCancelTokensWhenComplete(), application.getUser()); } catch (Exception e) { LOG.warn("Unable to parse credentials.", e); // Sending APP_REJECTED is fine, since we assume that the // RMApp is in NEW state and thus we haven't yet informed the // scheduler about the existence of the application assert application.getState() == RMAppState.NEW; this.rmContext.getDispatcher().getEventHandler() .handle(new RMAppRejectedEvent(applicationId, e.getMessage())); throw RPCUtil.getRemoteException(e); } } else { // Dispatcher is not yet started at this time, so these START events // enqueued should be guaranteed to be first processed when dispatcher // gets started. this.rmContext.getDispatcher().getEventHandler() .handle(new RMAppEvent(applicationId, RMAppEventType.START)); } }
9. 异步增加Application--DelegationTokenRenewer
/** * Asynchronously add application tokens for renewal. * @param applicationId added application * @param ts tokens * @param shouldCancelAtEnd true if tokens should be canceled when the app is * done else false. * @param user user */ public void addApplicationAsync(ApplicationId applicationId, Credentials ts, boolean shouldCancelAtEnd, String user) { processDelegationTokenRenewerEvent(new DelegationTokenRenewerAppSubmitEvent( applicationId, ts, shouldCancelAtEnd, user)); }
调用如下:
private void processDelegationTokenRenewerEvent( DelegationTokenRenewerEvent evt) { serviceStateLock.readLock().lock(); try { if (isServiceStarted) { renewerService.execute(new DelegationTokenRenewerRunnable(evt)); } else { pendingEventQueue.add(evt); } } finally { serviceStateLock.readLock().unlock(); } }
从上面可以看到,通过锁形式来让线程池来处理事件或者放入到事件队列中中。
新启一个线程:
@Override public void run() { if (evt instanceof DelegationTokenRenewerAppSubmitEvent) { DelegationTokenRenewerAppSubmitEvent appSubmitEvt = (DelegationTokenRenewerAppSubmitEvent) evt; handleDTRenewerAppSubmitEvent(appSubmitEvt); } else if (evt.getType().equals( DelegationTokenRenewerEventType.FINISH_APPLICATION)) { DelegationTokenRenewer.this.handleAppFinishEvent(evt); } }
@SuppressWarnings("unchecked") private void handleDTRenewerAppSubmitEvent( DelegationTokenRenewerAppSubmitEvent event) { /* * For applications submitted with delegation tokens we are not submitting * the application to scheduler from RMAppManager. Instead we are doing * it from here. The primary goal is to make token renewal as a part of * application submission asynchronous so that client thread is not * blocked during app submission. */ try { // Setup tokens for renewal DelegationTokenRenewer.this.handleAppSubmitEvent(event); rmContext.getDispatcher().getEventHandler() .handle(new RMAppEvent(event.getApplicationId(), RMAppEventType.START)); } catch (Throwable t) { LOG.warn( "Unable to add the application to the delegation token renewer.", t); // Sending APP_REJECTED is fine, since we assume that the // RMApp is in NEW state and thus we havne't yet informed the // Scheduler about the existence of the application rmContext.getDispatcher().getEventHandler().handle( new RMAppRejectedEvent(event.getApplicationId(), t.getMessage())); } } }
private void handleAppSubmitEvent(DelegationTokenRenewerAppSubmitEvent evt) throws IOException, InterruptedException { ApplicationId applicationId = evt.getApplicationId(); Credentials ts = evt.getCredentials(); boolean shouldCancelAtEnd = evt.shouldCancelAtEnd(); if (ts == null) { return; // nothing to add } if (LOG.isDebugEnabled()) { LOG.debug("Registering tokens for renewal for:" + " appId = " + applicationId); } Collection<Token<?>> tokens = ts.getAllTokens(); long now = System.currentTimeMillis(); // find tokens for renewal, but don't add timers until we know // all renewable tokens are valid // At RM restart it is safe to assume that all the previously added tokens // are valid appTokens.put(applicationId, Collections.synchronizedSet(new HashSet<DelegationTokenToRenew>())); Set<DelegationTokenToRenew> tokenList = new HashSet<DelegationTokenToRenew>(); boolean hasHdfsToken = false; for (Token<?> token : tokens) { if (token.isManaged()) { if (token.getKind().equals(new Text("HDFS_DELEGATION_TOKEN"))) { LOG.info(applicationId + " found existing hdfs token " + token); hasHdfsToken = true; } DelegationTokenToRenew dttr = allTokens.get(token); if (dttr == null) { dttr = new DelegationTokenToRenew(Arrays.asList(applicationId), token, getConfig(), now, shouldCancelAtEnd, evt.getUser()); try { renewToken(dttr); } catch (IOException ioe) { throw new IOException("Failed to renew token: " + dttr.token, ioe); } } tokenList.add(dttr); } } if (!tokenList.isEmpty()) { // Renewing token and adding it to timer calls are separated purposefully // If user provides incorrect token then it should not be added for // renewal. for (DelegationTokenToRenew dtr : tokenList) { DelegationTokenToRenew currentDtr = allTokens.putIfAbsent(dtr.token, dtr); if (currentDtr != null) { // another job beat us currentDtr.referringAppIds.add(applicationId); appTokens.get(applicationId).add(currentDtr); } else { appTokens.get(applicationId).add(dtr); setTimerForTokenRenewal(dtr); } } } if (!hasHdfsToken) { requestNewHdfsDelegationToken(Arrays.asList(applicationId), evt.getUser(), shouldCancelAtEnd); } }
RM:resourceManager
AM:applicationMaster
NM:nodeManager
简单的说,yarn涉及到3个通信协议:
ApplicationClientProtocol:client通过该协议与RM通信,以后会简称其为CR协议
ApplicationMasterProtocol:AM通过该协议与RM通信,以后会简称其为AR协议
ContainerManagementProtocol:AM通过该协议与NM通信,以后会简称其为AN协议
---------------------------------------------------------------------------------------------------------------------
通常而言,客户端向RM提交一个程序,流程是这样滴:
step1:创建一个CR协议的客户端
rmClient=(ApplicationClientProtocol)rpc.getProxy(ApplicationClientProtocol,rmAddress,conf)
step2:客户端通过CR协议#getNewApplication从RM获取唯一的应用程序ID,简化过的代码:
//GetNewApplicationRequest包含两项信息:ApplicationId 和 最大可申请的资源量
//Records.newRecord(...)是一个静态方法,通过序列化框架生成一些RPC过程需要的对象(yarn默认采用ProtocolBuffers(序列化框架,google ProtocolBuffers这些东东,麻烦大家google下呀,喵))
GetNewApplicationRequest request=Records.newRecord(GetNewApplicationRequest.class);
继续看代码(代码都是简化过的,亲们原谅):
GetNewApplicationResponse newApp =rmClient.getNewApplication(request);
ApplicationId appId = newApp.getApplicationId();
step3:客户端通过CR协议#submitApplication将AM提交到RM上,简化过的代码:
// 客户端将启动AM需要的所有信息打包到ApplicationSubmissionContext 中
ApplicationSubmissionContext context = Records.newRecord(ApplicationSubmissionContext.class);
。。。。//设置应用程序名称,优先级,队列名称云云
context.setApplicationName(appName);
//构造一个AM启动上下文对象
ContainerLaunchContext amContainer = Records.newRecord(ContainerLaunchContext .class)
。。。//设置AM相关的变量
amContainer.setLocalResource(localResponse);//设置AM启动所需要的本地资源
amContainer.setEnvironment(env);
context.setAMContainerSpec(amContainer);
context.setApplicationId(appId);
SubmitApplicationRequest request = Records.newRecord(SubmitApplicationRequest.class);
request.setApplicationSubmissionContext(request);
rmClien.submitApplication(request);//将应用程序提交到RM上
--------------------------------------------------------------------------------------------------------------------------------------------------
通常而言,AM向RM注册自己,申请资源,请求NM启动Container的流程是这样滴:
AM-RM流程:
step1:创建一个AR协议的客户端
ApplicationMasterProtocol rmClient = (ApplicationMasterProtocol)rpc.getProxy(ApplicationMasterProtocol.class,rmAddress,conf);
step2:AM向RM注册自己
//这里的 recordFactory.newRecordInstance(。。。)与上面的Records.newRecord(。。。)作用一样,都属于静态调用
RegisterApplicationMasterRequest request =recordFactory.newRecordInstance(RegisterApplicationMasterRequest.class);
request.setHost(host);
request.setRpcPort(port);
request.setTrackingUrl(appTrackingUrl)
RegisterApplicationMasterResponse response = rmClient.registerApplicationMaster(request);//完成注册
step3:AM向RM请求资源
一段简化的代码如下(感兴趣的朋友,还请亲自阅读源码):
synchronized(this){
askList =new ArrayList<ResourceRequest>(ask);
releaseList = new ArrayList<ContainerId>(release);
allocateRequest = BuilderUtils.newAllocateRequest(....);构造一个 allocateRequest 对象
}
//向RM申请资源,同时领取新分配的资源(CPU,内存等)
allocateResponse = rmClient.allocate(allocateRequest ) ;
//根据RM的应答信息设计接下来的逻辑(资源分配)
.....
step4:AM告诉RM应用程序执行完毕,并退出
//构造请求对象
FinishApplicationMasterRequest request = recordFactory.newRecordInstance(FinishApplicationMasterRequest.class );
request.setFinishApplicationStatus(appStatus);
..//设置诊断信息
..//设置trackingUrl
//通知RM自己退出
rmclient.finishApplicationMaster(request);
--------------------------------------------------------------------------------------------------------------------------------------------
AM-NM流程 :
step1:构造AN协议客户端,并启动Container
String cmIpPortStr = container.getNodeId().getHost()+":"+container.getNodeId().getPort();
InetSocketAddress cmAddress=NetUtils.createSocketAddr(cmIpPortStr);
anClient = (ContainerManagementProtocol)rpc.getProxy(ContainerManagementProtocol.class,cmAddress,conf)
ContainerLaunchContext ctx=Records.newRecord(ContainerLaunchContext.class);
。。。//设置ctx变量
StartContainerRequest request = Records.newRecord(StartContainerRequest.class);
request.setContainerLaunchContext(ctx);
request.setContainer(container);
anClient.startContainer(request);
Step2:为了实时掌握各个Container运行状态,AM可通过AN协议#getContainerStatus向NodeManager询问Container运行状态
Step3:一旦一个Container运行完成后,AM可通过AN协议#stopContainer释放Container
===============================================================================================
第一次跑hadoop实例,中间经过了不少弯路,特此记录下来:
第一步:建立一个maven过程,pom.xml文件:(打包为jar包)
<dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>2.7.0</version> </dependency>
第二步:创建一个WordCount(从官网上copy):
import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCount { public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context ) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } } public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context ) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "word count"); job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class); job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
第三步:打jar包:
mvn clean install
第四步:将jar包放入hadoop集群中的master机器上。
第五步:设置hdfs文件输入目录
在hadoop-2.6.0/etc/hadoop目录下core-site配置:
<configuration> <property> <name>fs.defaultFS</name> <value>hdfs://master:9000/</value> </property> <property> <name>hadoop.tmp.dir</name> <value>file:/home/localadmin/filedata</value> </property> </configuration>
上面可以看到hdfs的根目录,或者使用命令查看:
bin/hadoop fs -ls /
设置输入目录
在/home/localadmin创建filedata/infile目录,并创建文件file01,file02
bin/hadoop fs -put /home/localadmin/filedata/infile/
bin/hadoop fs -put /home/localadmin/filedata/infile/file01
bin/hadoop fs -put /home/localadmin/filedata/infile/file02
检查文件情况命令:
# bin/hadoop fs -ls /home/localadmin/filedata/input
Found 2 items
-rw-r--r-- 3 root supergroup 22 2015-12-25 13:56 /home/localadmin/filedata/input/file01
-rw-r--r-- 3 root supergroup 28 2015-12-25 13:56 /home/localadmin/filedata/input/file02
注意:不要设置输出目录:
hadoop 由于进行的是耗费资源的计算,生产的结果默认是不能被覆盖的,
因此中间结果输出目录一定不能存在,否则出现这个错误。
第六步:执行命令:
hadoop jar wc.jar com.nonobank.hadoop.WordCount ../filedata/input/ ../filedata/output/
Mapper 与 Reducer 解析
1 . 旧版 API 的 Mapper/Reducer 解析
Mapper/Reducer 中封装了应用程序的数据处理逻辑。为了简化接口,MapReduce 要求所有存储在底层分布式文件系统上的数据均要解释成 key/value 的形式,并交给Mapper/Reducer 中的 map/reduce 函数处理,产生另外一些 key/value。Mapper 与 Reducer 的类体系非常类似,我们以 Mapper 为例进行讲解。Mapper 的类图如图所示,包括初始化、Map操作和清理三部分。
(1)初始化
Mapper 继承了 JobConfigurable 接口。该接口中的 configure 方法允许通过 JobConf 参数对 Mapper 进行初始化。
(2)Map 操作
MapReduce 框架会通过 InputFormat 中 RecordReader 从 InputSplit 获取一个个 key/value 对, 并交给下面的 map() 函数处理:
void map(K1 key, V1 value, OutputCollector<K2, V2> output, Reporter reporter) throws IOException;
该函数的参数除了 key 和 value 之外, 还包括 OutputCollector 和 Reporter 两个类型的参数, 分别用于输出结果和修改 Counter 值。
(3)清理
Mapper 通过继承 Closeable 接口(它又继承了 Java IO 中的 Closeable 接口)获得 close方法,用户可通过实现该方法对 Mapper 进行清理。
MapReduce 提供了很多 Mapper/Reducer 实现,但大部分功能比较简单,具体如图所示。它们对应的功能分别是:
ChainMapper/ChainReducer:用于支持链式作业。
IdentityMapper/IdentityReducer:对于输入 key/value 不进行任何处理, 直接输出。
InvertMapper:交换 key/value 位置。
RegexMapper:正则表达式字符串匹配。
TokenMapper:将字符串分割成若干个 token(单词),可用作 WordCount 的 Mapper。
LongSumReducer:以 key 为组,对 long 类型的 value 求累加和。
对于一个 MapReduce 应用程序,不一定非要存在 Mapper。MapReduce 框架提供了比 Mapper 更通用的接口:MapRunnable,如图所示。用 户可以实现该接口以定制Mapper 的调用 方式或者自己实现 key/value 的处理逻辑,比如,Hadoop Pipes 自行实现了MapRunnable,直接将数据通过 Socket 发送给其他进程处理。提供该接口的另外一个好处是允许用户实现多线程 Mapper。
如图所示, MapReduce 提供了两个 MapRunnable 实现,分别是 MapRunner 和MultithreadedMapRunner,其中 MapRunner 为默认实现。 MultithreadedMapRunner 实现了一种多线程的 MapRunnable。 默认情况下,每个 Mapper 启动 10 个线程,通常用于非 CPU类型的作业以提供吞吐率。
2. 新版 API 的 Mapper/Reducer 解析
从图可知, 新 API 在旧 API 基础上发生了以下几个变化:
Mapper 由接口变为类,且不再继承 JobConfigurable 和 Closeable 两个接口,而是直接在类中添加了 setup 和 cleanup 两个方法进行初始化和清理工作。
将参数封装到 Context 对象中,这使得接口具有良好的扩展性。
去掉 MapRunnable 接口,在 Mapper 中添加 run 方法,以方便用户定制 map() 函数的调用方法,run 默认实现与旧版本中 MapRunner 的 run 实现一样。
新 API 中 Reducer 遍历 value 的迭代器类型变为 java.lang.Iterable,使得用户可以采用“ foreach” 形式遍历所有 value,如下所示:
void reduce(KEYIN key, Iterable<VALUEIN> values, Context context) throws IOException, InterruptedException { for(VALUEIN value: values) { // 注意遍历方式 context.write((KEYOUT) key, (VALUEOUT) value); } }
Mapper类的完整代码如下:
package org.apache.hadoop.mapreduce; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.io.RawComparator; import org.apache.hadoop.io.compress.CompressionCodec; /** * Maps input key/value pairs to a set of intermediate key/value pairs. * * <p>Maps are the individual tasks which transform input records into a * intermediate records. The transformed intermediate records need not be of * the same type as the input records. A given input pair may map to zero or * many output pairs.</p> * * <p>The Hadoop Map-Reduce framework spawns one map task for each * {@link InputSplit} generated by the {@link InputFormat} for the job. * <code>Mapper</code> implementations can access the {@link Configuration} for * the job via the {@link JobContext#getConfiguration()}. * * <p>The framework first calls * {@link #setup(org.apache.hadoop.mapreduce.Mapper.Context)}, followed by * {@link #map(Object, Object, Context)} * for each key/value pair in the <code>InputSplit</code>. Finally * {@link #cleanup(Context)} is called.</p> * * <p>All intermediate values associated with a given output key are * subsequently grouped by the framework, and passed to a {@link Reducer} to * determine the final output. Users can control the sorting and grouping by * specifying two key {@link RawComparator} classes.</p> * * <p>The <code>Mapper</code> outputs are partitioned per * <code>Reducer</code>. Users can control which keys (and hence records) go to * which <code>Reducer</code> by implementing a custom {@link Partitioner}. * * <p>Users can optionally specify a <code>combiner</code>, via * {@link Job#setCombinerClass(Class)}, to perform local aggregation of the * intermediate outputs, which helps to cut down the amount of data transferred * from the <code>Mapper</code> to the <code>Reducer</code>. * * <p>Applications can specify if and how the intermediate * outputs are to be compressed and which {@link CompressionCodec}s are to be * used via the <code>Configuration</code>.</p> * * <p>If the job has zero * reduces then the output of the <code>Mapper</code> is directly written * to the {@link OutputFormat} without sorting by keys.</p> * * <p>Example:</p> * <p><blockquote><pre> * public class TokenCounterMapper * extends Mapper<Object, Text, Text, IntWritable>{ * * private final static IntWritable one = new IntWritable(1); * private Text word = new Text(); * * public void map(Object key, Text value, Context context) throws IOException { * StringTokenizer itr = new StringTokenizer(value.toString()); * while (itr.hasMoreTokens()) { * word.set(itr.nextToken()); * context.collect(word, one); * } * } * } * </pre></blockquote></p> * * <p>Applications may override the {@link #run(Context)} method to exert * greater control on map processing e.g. multi-threaded <code>Mapper</code>s * etc.</p> * * @see InputFormat * @see JobContext * @see Partitioner * @see Reducer */ public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> { public class Context extends MapContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> { public Context(Configuration conf, TaskAttemptID taskid, RecordReader<KEYIN,VALUEIN> reader, RecordWriter<KEYOUT,VALUEOUT> writer, OutputCommitter committer, StatusReporter reporter, InputSplit split) throws IOException, InterruptedException { super(conf, taskid, reader, writer, committer, reporter, split); } } /** * Called once at the beginning of the task. */ protected void setup(Context context ) throws IOException, InterruptedException { // NOTHING } /** * Called once for each key/value pair in the input split. Most applications * should override this, but the default is the identity function. */ @SuppressWarnings("unchecked") protected void map(KEYIN key, VALUEIN value, Context context) throws IOException, InterruptedException { context.write((KEYOUT) key, (VALUEOUT) value); } /** * Called once at the end of the task. */ protected void cleanup(Context context ) throws IOException, InterruptedException { // NOTHING } /** * Expert users can override this method for more complete control over the * execution of the Mapper. * @param context * @throws IOException */ public void run(Context context) throws IOException, InterruptedException { setup(context); while (context.nextKeyValue()) { map(context.getCurrentKey(), context.getCurrentValue(), context); } cleanup(context); } }
从代码中可以看到,Mapper类中定义了一个新的类Context,继承自MapContext
我们来看看MapContext类的源代码:
package org.apache.hadoop.mapreduce; import java.io.IOException; import org.apache.hadoop.conf.Configuration; /** * The context that is given to the {@link Mapper}. * @param <KEYIN> the key input type to the Mapper * @param <VALUEIN> the value input type to the Mapper * @param <KEYOUT> the key output type from the Mapper * @param <VALUEOUT> the value output type from the Mapper */ public class MapContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> extends TaskInputOutputContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> { private RecordReader<KEYIN,VALUEIN> reader; private InputSplit split; public MapContext(Configuration conf, TaskAttemptID taskid, RecordReader<KEYIN,VALUEIN> reader, RecordWriter<KEYOUT,VALUEOUT> writer, OutputCommitter committer, StatusReporter reporter, InputSplit split) { super(conf, taskid, writer, committer, reporter); this.reader = reader; this.split = split; } /** * Get the input split for this map. */ public InputSplit getInputSplit() { return split; } @Override public KEYIN getCurrentKey() throws IOException, InterruptedException { return reader.getCurrentKey(); } @Override public VALUEIN getCurrentValue() throws IOException, InterruptedException { return reader.getCurrentValue(); } @Override public boolean nextKeyValue() throws IOException, InterruptedException { return reader.nextKeyValue(); } }
MapContext类继承自TaskInputOutputContext,再看看TaskInputOutputContext类的代码:
package org.apache.hadoop.mapreduce; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.util.Progressable; /** * A context object that allows input and output from the task. It is only * supplied to the {@link Mapper} or {@link Reducer}. * @param <KEYIN> the input key type for the task * @param <VALUEIN> the input value type for the task * @param <KEYOUT> the output key type for the task * @param <VALUEOUT> the output value type for the task */ public abstract class TaskInputOutputContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> extends TaskAttemptContext implements Progressable { private RecordWriter<KEYOUT,VALUEOUT> output; private StatusReporter reporter; private OutputCommitter committer; public TaskInputOutputContext(Configuration conf, TaskAttemptID taskid, RecordWriter<KEYOUT,VALUEOUT> output, OutputCommitter committer, StatusReporter reporter) { super(conf, taskid); this.output = output; this.reporter = reporter; this.committer = committer; } /** * Advance to the next key, value pair, returning null if at end. * @return the key object that was read into, or null if no more */ public abstract boolean nextKeyValue() throws IOException, InterruptedException; /** * Get the current key. * @return the current key object or null if there isn't one * @throws IOException * @throws InterruptedException */ public abstract KEYIN getCurrentKey() throws IOException, InterruptedException; /** * Get the current value. * @return the value object that was read into * @throws IOException * @throws InterruptedException */ public abstract VALUEIN getCurrentValue() throws IOException, InterruptedException; /** * Generate an output key/value pair. */ public void write(KEYOUT key, VALUEOUT value ) throws IOException, InterruptedException { output.write(key, value); } public Counter getCounter(Enum<?> counterName) { return reporter.getCounter(counterName); } public Counter getCounter(String groupName, String counterName) { return reporter.getCounter(groupName, counterName); } @Override public void progress() { reporter.progress(); } @Override public void setStatus(String status) { reporter.setStatus(status); } public OutputCommitter getOutputCommitter() { return committer; } }
TaskInputOutputContext类继承自TaskAttemptContext,实现了Progressable接口,先看看Progressable接口的代码:
package org.apache.hadoop.util; /** * A facility for reporting progress. * * <p>Clients and/or applications can use the provided <code>Progressable</code> * to explicitly report progress to the Hadoop framework. This is especially * important for operations which take an insignificant amount of time since, * in-lieu of the reported progress, the framework has to assume that an error * has occured and time-out the operation.</p> */ public interface Progressable { /** * Report progress to the Hadoop framework. */ public void progress(); }
TaskAttemptContext类的代码:
package org.apache.hadoop.mapreduce; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.util.Progressable; /** * The context for task attempts. */ public class TaskAttemptContext extends JobContext implements Progressable { private final TaskAttemptID taskId; private String status = ""; public TaskAttemptContext(Configuration conf, TaskAttemptID taskId) { super(conf, taskId.getJobID()); this.taskId = taskId; } /** * Get the unique name for this task attempt. */ public TaskAttemptID getTaskAttemptID() { return taskId; } /** * Set the current status of the task to the given string. */ public void setStatus(String msg) throws IOException { status = msg; } /** * Get the last set status message. * @return the current status message */ public String getStatus() { return status; } /** * Report progress. The subtypes actually do work in this method. */ public void progress() { } }
TaskAttemptContext继承自类JobContext,最后来看看JobContext的源代码:
package org.apache.hadoop.mapreduce; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.RawComparator; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner; /** * A read-only view of the job that is provided to the tasks while they * are running. */ public class JobContext { // Put all of the attribute names in here so that Job and JobContext are // consistent. protected static final String INPUT_FORMAT_CLASS_ATTR = "mapreduce.inputformat.class"; protected static final String MAP_CLASS_ATTR = "mapreduce.map.class"; protected static final String COMBINE_CLASS_ATTR = "mapreduce.combine.class"; protected static final String REDUCE_CLASS_ATTR = "mapreduce.reduce.class"; protected static final String OUTPUT_FORMAT_CLASS_ATTR = "mapreduce.outputformat.class"; protected static final String PARTITIONER_CLASS_ATTR = "mapreduce.partitioner.class"; protected final org.apache.hadoop.mapred.JobConf conf; private final JobID jobId; public JobContext(Configuration conf, JobID jobId) { this.conf = new org.apache.hadoop.mapred.JobConf(conf); this.jobId = jobId; } /** * Return the configuration for the job. * @return the shared configuration object */ public Configuration getConfiguration() { return conf; } /** * Get the unique ID for the job. * @return the object with the job id */ public JobID getJobID() { return jobId; } /** * Get configured the number of reduce tasks for this job. Defaults to * <code>1</code>. * @return the number of reduce tasks for this job. */ public int getNumReduceTasks() { return conf.getNumReduceTasks(); } /** * Get the current working directory for the default file system. * * @return the directory name. */ public Path getWorkingDirectory() throws IOException { return conf.getWorkingDirectory(); } /** * Get the key class for the job output data. * @return the key class for the job output data. */ public Class<?> getOutputKeyClass() { return conf.getOutputKeyClass(); } /** * Get the value class for job outputs. * @return the value class for job outputs. */ public Class<?> getOutputValueClass() { return conf.getOutputValueClass(); } /** * Get the key class for the map output data. If it is not set, use the * (final) output key class. This allows the map output key class to be * different than the final output key class. * @return the map output key class. */ public Class<?> getMapOutputKeyClass() { return conf.getMapOutputKeyClass(); } /** * Get the value class for the map output data. If it is not set, use the * (final) output value class This allows the map output value class to be * different than the final output value class. * * @return the map output value class. */ public Class<?> getMapOutputValueClass() { return conf.getMapOutputValueClass(); } /** * Get the user-specified job name. This is only used to identify the * job to the user. * * @return the job's name, defaulting to "". */ public String getJobName() { return conf.getJobName(); } /** * Get the {@link InputFormat} class for the job. * * @return the {@link InputFormat} class for the job. */ @SuppressWarnings("unchecked") public Class<? extends InputFormat<?,?>> getInputFormatClass() throws ClassNotFoundException { return (Class<? extends InputFormat<?,?>>) conf.getClass(INPUT_FORMAT_CLASS_ATTR, TextInputFormat.class); } /** * Get the {@link Mapper} class for the job. * * @return the {@link Mapper} class for the job. */ @SuppressWarnings("unchecked") public Class<? extends Mapper<?,?,?,?>> getMapperClass() throws ClassNotFoundException { return (Class<? extends Mapper<?,?,?,?>>) conf.getClass(MAP_CLASS_ATTR, Mapper.class); } /** * Get the combiner class for the job. * * @return the combiner class for the job. */ @SuppressWarnings("unchecked") public Class<? extends Reducer<?,?,?,?>> getCombinerClass() throws ClassNotFoundException { return (Class<? extends Reducer<?,?,?,?>>) conf.getClass(COMBINE_CLASS_ATTR, null); } /** * Get the {@link Reducer} class for the job. * * @return the {@link Reducer} class for the job. */ @SuppressWarnings("unchecked") public Class<? extends Reducer<?,?,?,?>> getReducerClass() throws ClassNotFoundException { return (Class<? extends Reducer<?,?,?,?>>) conf.getClass(REDUCE_CLASS_ATTR, Reducer.class); } /** * Get the {@link OutputFormat} class for the job. * * @return the {@link OutputFormat} class for the job. */ @SuppressWarnings("unchecked") public Class<? extends OutputFormat<?,?>> getOutputFormatClass() throws ClassNotFoundException { return (Class<? extends OutputFormat<?,?>>) conf.getClass(OUTPUT_FORMAT_CLASS_ATTR, TextOutputFormat.class); } /** * Get the {@link Partitioner} class for the job. * * @return the {@link Partitioner} class for the job. */ @SuppressWarnings("unchecked") public Class<? extends Partitioner<?,?>> getPartitionerClass() throws ClassNotFoundException { return (Class<? extends Partitioner<?,?>>) conf.getClass(PARTITIONER_CLASS_ATTR, HashPartitioner.class); } /** * Get the {@link RawComparator} comparator used to compare keys. * * @return the {@link RawComparator} comparator used to compare keys. */ public RawComparator<?> getSortComparator() { return conf.getOutputKeyComparator(); } /** * Get the pathname of the job's jar. * @return the pathname */ public String getJar() { return conf.getJar(); } /** * Get the user defined {@link RawComparator} comparator for * grouping keys of inputs to the reduce. * * @return comparator set by the user for grouping values. * @see Job#setGroupingComparatorClass(Class) for details. */ public RawComparator<?> getGroupingComparator() { return conf.getOutputValueGroupingComparator(); } }