• 拿Haskell写的Interpreter For JavaScript


     

    At first, it’s better not to meet you

    So we cannot fall in love

    Then it’s better not to know you

    So I don’t need to become lovesick

    时隔一年,偶尔看到Haskell虽然还能看懂但是细枝末节的语法都忘了

    决定收拾归纳一波以前写过的若干code,同时这个博客号已经申了两年了, 再放着都gammel了

    ***************************************

    使用Haskell完成一个简易版本的JavaScript的Interpreter,支持赋值,判断以及循环语句等。

    主要是锻炼Monad的实际使用

     

    自己记录之余为了方便与诸君共同交流学习,详细的功能都有备注。(因为cnblog没有支持haskell,如下代码的插入采用Scale替代)

    如下是主体部分的code,完整repository计划在毕业后push到github上,届时将更新并附上链接。

     

    Note:需转载请务必通知作者,否则法律责任后果自负

     

    module SubsInterpreter
           (
             Value(..)
           , runExpr
           )
           where
    
    import SubsAst
    
    import Control.Monad
    import qualified Data.Map as Map
    import Data.Map(Map)
    import Data.Foldable
    
    {-
       A value is either an integer, the special constant undefined,
       true, false, a string, or an array of values.
       Expressions are evaluated to values.
    -}
    data Value = IntVal Int
               | UndefinedVal
               | TrueVal | FalseVal
               | StringVal String
               | ArrayVal [Value]
               deriving (Eq, Show)
    
    type Error = String
    type Env = Map Ident Value
    type Primitive = [Value] -> Either Error Value
    type PEnv = Map FunName Primitive
    type Context = (Env, PEnv)
    
    {-
      Takes as input the Context type, that is, the Map for Value types
      and the Map for functions/operators. More specifically, the function
      returns an emptry context, that is, emptry Map of each.
      Specifically the binding is:
      Context: (Map String Value, Map String ([Value] -> Either Error Value))
      So it returns the Either monad
    -}
    initialContext :: Context
    initialContext = (Map.empty, initialPEnv)
      where initialPEnv =
              Map.fromList [ ("===", equalOp)
                           , ("<", lowerOp)
                           , ("+", plusOp)
                           , ("*", multOp)
                           , ("-", minusOp)
                           , ("%", moduloOp)
                           , ("Array", mkArray)
                           ]
    
    {-
      The data type for the Monad, which takes a single type constructor
      and has a single field. Inside the field is the function runSubsM,
      the accessor function of the monad.
    -}
    newtype SubsM a = SubsM {runSubsM :: Context -> Either Error (a, Env)}
    
    {-
      The Functor instance of SubsM. It contains the
      default implementation for fmap, which binds the
      return of the f a invocation to the state.
    -}
    instance Functor SubsM where
      fmap f m = m >>= a -> return (f a)
    
    {-
      The Appplicative instance of SubsM.
      Contains simply some placeholders for pure and
      (<*>) functions
    -}
    instance Applicative SubsM where
      pure = return
      (<*>) = ap
    
    {-
      The Monad instance of SubsM. The return function returns
      The new result a is kept in the unchanged state env.
      The bind operator is done with a monad m and a function f.
      Here, we run the accessor function runSubsM with the monad m
      and state x. Then, we pattern match whether it returns Right
      or Left from the Either monad. For Right, we update the
      primitive environment and the new value that return from (f a)
    -}
    instance Monad SubsM where
      return a = SubsM ((env, _) -> Right (a, env))
      m >>= f = SubsM (x -> case runSubsM m x of
                        Right (a, env) -> let (_, penv) = x
                                          in runSubsM (f a) (env, penv)
                        Left err -> Left err
                    )
      fail s = SubsM (\_ -> Left s)
    
    {-
      Compares for structural equality without type coercions
      Comparison of number and string will always yield false
      The type binding alias is: [Value] -> Either Error Value
    -}
    equalOp :: Primitive
    equalOp vals =
      case vals of
        [StringVal x, StringVal y] -> if x == y then return TrueVal
                                else return FalseVal
        [IntVal x, IntVal y] -> if x == y then return TrueVal
                                else return FalseVal
        [IntVal _, StringVal _] -> return FalseVal
        [StringVal _, IntVal _] -> return FalseVal
        [UndefinedVal, UndefinedVal] -> return UndefinedVal
        [TrueVal, FalseVal] -> return FalseVal
        [FalseVal, TrueVal] -> return FalseVal
        [FalseVal, FalseVal] -> return TrueVal
        [TrueVal, TrueVal] -> return TrueVal
        [ArrayVal a, ArrayVal b] -> if a == b then return TrueVal
                                    else return FalseVal
        _ -> fail "Invalid equal operation"
    
    {-
      Arguments for < should either be of the same type,
      e.g. both strings or both int, and for strings they should be
      compared in lexicographical order.
    -}
    lowerOp :: Primitive
    lowerOp vals =
      case vals of
        [StringVal x, StringVal y] -> if x < y then return TrueVal
                                else return FalseVal
        [IntVal x, IntVal y] -> if x < y then return TrueVal
                                else return FalseVal
        [UndefinedVal, UndefinedVal] -> return UndefinedVal
        [TrueVal, FalseVal] -> return FalseVal
        [FalseVal, TrueVal] -> return TrueVal
        [FalseVal, FalseVal] -> return FalseVal
        [TrueVal, TrueVal] -> return FalseVal
        _ -> fail "Invalid lower than operation"
    
    {-
      Somewhat strongly typed, no addition of boolean and integer for example.
      Except for addition: ok to add two strings or a string
      and a number in any order. Remember the conversation first.
      For two strings it is string concatenation.
    -}
    plusOp :: Primitive
    plusOp vals =
      case vals of
        [StringVal x, StringVal y] -> return $ StringVal (x++y)
        [IntVal x, IntVal y] -> return $ IntVal (x+y)
        [StringVal x, IntVal y] -> return $ StringVal (x ++ show y)
        [IntVal x, StringVal y] -> return $ StringVal (show x ++ y)
        [ArrayVal x, ArrayVal y] -> return $ ArrayVal (x++y)
        [TrueVal, FalseVal] -> return FalseVal
        [FalseVal, TrueVal] -> return FalseVal
        [UndefinedVal, UndefinedVal] -> return UndefinedVal
        _ -> fail "Invalid plus operation"
    
    {-
      Covering the multiplication operator for two integers
      and also for two Arrays. However, for the array as input
      we recursively evaluated the deconstructed types to IntVal
      and then execute the operation.
    -}
    multOp :: Primitive
    multOp vals = case vals of
                    [IntVal x, IntVal y] -> return $ IntVal (x*y)
                    [ArrayVal x, ArrayVal y] -> do
                                                   a <- multOp x
                                                   b <- multOp y
                                                   Right (ArrayVal (a : [b]))
                    _ -> fail "Illegal multiplication operation.
                              Can only be two integers"
    
    {-
      Covering the subtraction operator for two integers
      and also for two Arrays. However, for the array as input
      we recursively evaluate the deconstructed types to IntVal
      and then execute the operation.
    -}
    minusOp :: Primitive
    minusOp vals = case vals of
                     [IntVal x, IntVal y] -> return $ IntVal (x-y)
                     [ArrayVal x, ArrayVal y] -> do
                                                    a <- minusOp x
                                                    b <- minusOp y
                                                    Right (ArrayVal (a : [b]))
                     _ -> fail "Illegal minus operations. Can only be two integers"
    
    {-
      Covering the modulo operator for two integers
      and also for two Arrays. However, for the array as input
      we recursively evaluate the deconstructed types to IntVal
      and then execute the operation.
    -}
    moduloOp :: Primitive
    moduloOp vals = case vals of
                      [IntVal x, IntVal y] -> return $ IntVal (x `mod` y)
                      [ArrayVal x, ArrayVal y] -> do
                                                     a <- moduloOp x
                                                     b <- moduloOp y
                                                     Right (ArrayVal (a : [b]))
                      _ -> fail "Illegal modulo operation. Can only be two integers"
    
    {-
      Function for making an array of undefined values
      given the non negative integer n
    -}
    mkArray :: Primitive
    mkArray [IntVal n] | n >= 0 = return $ ArrayVal (replicate n UndefinedVal)
    mkArray _ = Left "Array() called with wrong number or type of arguments"
    
    {-
      A function that given a function f
      updates the environment/state
    -}
    modifyEnv :: (Env -> Env) -> SubsM ()
    modifyEnv f = SubsM ((env, _) -> Right ((), f env))
    
    {-
      Given an identifier and a corresponding value
      We insert these in the Map in the monad, thus,
      we modify the environment/state
    -}
    putVar :: Ident -> Value -> SubsM ()
    putVar ident val = modifyEnv (Map.insert ident val)
    
    {-
      Given an identifier we get the retrieved
      value, provided it exists, in the monad
    -}
    getVar :: Ident -> SubsM Value
    getVar name = do
      s <- SubsM ((env, _) -> Right (env, env))
      case Map.lookup name s of
        Just a  -> return a
        Nothing -> fail "Variable name not in scope"
    
    {-
      Given a function name, we look it up the
      in the Map, return the Map with the monad type
      SubsM (Either monad)
    -}
    getFunction :: FunName -> SubsM Primitive
    getFunction name = do
      s <- SubsM ((env, penv) -> Right (penv, env))
      case Map.lookup name s of
        Just n  -> return n
        Nothing -> fail "Function name not in scope"
    
    {-
      evalExpr evaluates the various expressions to their corresponding
      Value in the monad.
    -}
    evalExpr :: Expr -> SubsM Value
    evalExpr (Number x) = return (IntVal x)
    evalExpr (String s) = return (StringVal s)
    evalExpr (Array []) = return (ArrayVal [])
    evalExpr (Array (x:xs)) = do
                                 x' <- evalExpr x
                                 xs' <- evalExpr (Array xs)
                                 case xs' of
                                   ArrayVal y -> return (ArrayVal (x':y))
                                   _ -> fail "Evaluating array expected an ArrayVal
                                             \,but was not given"
    evalExpr TrueConst = return TrueVal
    evalExpr FalseConst = return FalseVal
    evalExpr Undefined = return UndefinedVal
    evalExpr (Var x) = getVar x
    evalExpr (Assign ident expr) =  do
                                       xpeval <- evalExpr expr
                                       putVar ident xpeval
                                       return xpeval
    evalExpr (Call name expr) = do
                                   fn <- getFunction name
                                   values <- mapM evalExpr expr
                                   case fn values of
                                     Right y -> return y
                                     Left _ -> fail "Invalid function call"
    evalExpr (Comma expr1 expr2) = do
                                      _ <- evalExpr expr1
                                      evalExpr expr2
    evalExpr (Compr compr) = do
                                x <- evalCompr compr
                                return (ArrayVal x)
    
    {-
      evaluating the comprehension mechanism
      taking as an input the type and returning
      a list of Value in the SubsM monad. We have patterns
      for the three types and here the ACFor is the most complex.
      In case of an array evaluate each value in it and then concatenate
      In case of a string we do similarly, however, we get for each string
      an additional list layer
    -}
    evalCompr :: ArrayCompr -> SubsM [Value]
    evalCompr arrcompr =
      case arrcompr of
        ACBody expr -> do
                          x <- evalExpr expr
                          return [ArrayVal [x]]
        ACFor ident expr arrcomp ->
          do
             xpeval <- evalExpr expr
             var <- getVarMaybe ident
             retVal <- case xpeval of
                         ArrayVal vals -> do
                                             a <- mapM (helpFun arrcomp ident) vals
                                             _ <- evalCompr arrcomp
                                             return (concatMap f a)
                         StringVal s -> do
                                          _ <- putVar ident (StringVal s)
                                          _ <- evalCompr arrcomp
                                          let x = ArrayVal [StringVal s]
                                          return (concatMap f [[x]])
                         _ -> fail "Only Arrays and Strings allowed
                                   in for comprehensions"
             Data.Foldable.forM_ var (putVar ident)
             -- when (isJust var) (putVar ident (fromJust var))
             return retVal
               where f [ArrayVal x] = x
                     f x = x
                     helpFun arrc idier val = do
                               _ <- putVar idier val
                               evalCompr arrc
        ACIf expr arrcomp ->
          do
             xpeval <- evalExpr expr
             case xpeval of
               TrueVal -> evalCompr arrcomp
               FalseVal -> return [ArrayVal []]
               _ -> fail "If stmt not working"
    
    {-
      Function used to invoke whether variable exists in
      the Map or not. getVar can't be used, as it would yield
      an error and not resume execution.
    -}
    getVarMaybe :: Ident -> SubsM (Maybe Value)
    getVarMaybe name = do
      s <- SubsM ((env, _) -> Right (env, env))
      case Map.lookup name s of
        Just a  -> return (Just a)
        Nothing -> return Nothing
    
    {-
      Running an expression, also running the initialContext function
      with empty Maps, eventually returning the Either monad of either
      Error or Value.
    -}
    runExpr :: Expr -> Either Error Value
    runExpr expr =
      case runSubsM (evalExpr expr) initialContext of
        Right (a, _) -> Right a
        Left err -> fail err
  • 相关阅读:
    软件工程第一次作业
    单调队列
    八皇后问题
    蓝桥-区间K大数查询
    putchar()和getchar()使用解析
    C++中的各种进制转换函数汇总及学习
    第五次团队作业
    第二次团队作业
    确定团队开发项目
    结对编程之设计电梯控制程序
  • 原文地址:https://www.cnblogs.com/hanani/p/9981204.html
Copyright © 2020-2023  润新知