Weighted Kernel PCA
KPCA算法是基础,快速了解请查阅我的博客
为了提高KPCA的鲁棒性和稀疏性,可以添加权重,对于噪声点可以减少其权重。原来的公式基础上,引入对称半正定权重矩阵(V)
[eqalign{& mathop {max} _{ w,e}J_p(w,e) =gamma frac{1}{2}e^TVe−frac{1}{2}w^Tw
cr & e=Phi w
cr & Phi = egin{bmatrix} phi(x_1)^T; ...;phi(x_N)^T end{bmatrix}\
cr & V = V^T >0}
]
同样用Lagrangian求解:
[L(w, e;alpha) = gamma frac{1}{2}e^TVe -frac{1}{2} w^Tw- alpha ^T(e_ - phi w)
]
最优时,有
[frac {partial L}{partial w} = 0
ightarrow w = Phi ^T alpha ]
[frac {partial L}{partial e} = 0
ightarrow alpha = gamma V e]
[frac {partial L}{partial alpha} = 0
ightarrow e = Phi w]
消去(w, e)得到非对称矩阵的特征值分解问题:
[egin{align}V Omega alpha = lambda alphaend{align}
]
(V Omega)可能不是对称的,但是因为(V, Omega)时正定的, 所以(V Omega)也是正定的。
测试数据的(x)的投影坐标为:
[z(x) = w^T phi(x) = sum _{l=1}^N alpha _l kappa (x_l, x)
]
谱聚类的联系
kernel alignment
[Omega ar q = lambda ar q
]
Markov Random Walks
[D^{-1}W r=lambda r
]
normalized cut
[L ar q = lambda D ar q
]
NJW
[(D^{-1}WD^{-frac{1}{2}}) ar q = lambda D^{-frac{1}{2}}ar q
]
Method |
Original Problem |
V |
Relaxed Solution |
Alignment |
$$Omega q = lambda q$$ |
$$I_N$$ |
$$alpha^{(1)}$$ |
Ncut |
$$L q = lambda D q$$ |
$$D^{-1}$$ |
$$alpha^{(2)}$$ |
Random walks |
$$D^{-1}W q=lambda q$$ |
$$D^{-1}$$ |
$$alpha^{(2)}$$ |
NJW |
$$(D{-1}WD{-frac{1}{2}}) ar q = lambda D^{-frac{1}{2}}ar q$$ |
$$D^{-1}$$ |
$$D{frac{1}{2}}alpha{(2)}$$ |
带偏置的推导
[eqalign {& mathop{max} _{w,e}J_p(w,e)=gamma frac{1}{2}e^TVe−frac{1}{2}w^Tw
cr & e=Phi w + b 1_N
cr & Phi = egin{bmatrix} phi(x_1)^T; ...;phi(x_N)^T end{bmatrix}
cr & V = V^T >0 }
]
同样用Lagrangian求解:
[L(w, e;alpha) = gamma frac{1}{2}e^TVe -frac{1}{2} w^Tw- alpha ^T(e_ - phi w- b1_N)
]
最优时,有
[eqalign{& frac {partial L}{partial w} = 0
ightarrow w = Phi ^T alpha
cr & frac {partial L}{partial e} = 0
ightarrow alpha = gamma V e
cr & frac {partial L}{partial b} = 0
ightarrow 1_N^T alpha = 0
cr & frac {partial L}{partial alpha} = 0
ightarrow e = Phi w+ b 1_N}]
解得:
[b = -frac{1}{1_N^T V 1_N}1_N^T V Omega alpha
]
消去(w, e)得到特征值分解问题:
[egin{align}M Omega alpha = lambda alphaend{align}
]
其中 $$M = V-frac{1}{1_N^T V 1_N} V 1_N 1_N^T V $$
测试数据的(x)的投影坐标为:
[z(x) = w^T phi(x) +b= sum _{l=1}^N alpha _l kappa (x_l, x)+b
]
测试数据的类别可以通过以下得到评估,有疑问请查阅博客:
[q(x) = {
m sign}({w^{T}} phi (x)- heta) \={
m sign} left( {sum limits_{l=1}^{N}}{alpha_{l}}K(x_{l}, x)- heta
ight)
]
参考文献
[1]. Alzate C, Suykens J A K. A weighted kernel PCA formulation with out-of-sample extensions for spectral clustering methods[C]//Neural Networks, 2006. IJCNN'06. International Joint Conference on. IEEE, 2006: 138-144.
[2]. Bengio Y, Paiement J, Vincent P, et al. Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering[C]//Advances in neural information processing systems. 2004: 177-184.
[3]. C. Alzate and J. A. K. Suykens. Kernel principal component analysis using an epsilon insensitive robust loss function. Internal report 06-03.Submitted for publication, ESAT-SISTA, K. U. Leuven, 2006