• 随机森林参数说明


    为什么要调整机器学习算法?

    一个月以前,我在kaggle上参加了一个名为TFI的比赛。 我第一次提交的结果在50%。 我不懈努力在特征工程上花了超过2周的时间,勉强达到20%。 出乎我意料的事是,在调整机器学习算法参数之后,我能够达到前10%。

    这是这就是机器学习算法参数调优的重要性。 随机森林是在工业界中使用的最简单的机器学习工具之一。 在我们以前的文章中,我们已经向您介绍了随机森林和和CART模型进行了对比 。 机器学习工具包正由于这些算法的表现而被人所熟知。。

    随机森林是什么?

    随机森林是一个集成工具,它使用观测数据的子集和变量的子集来建立一个决策树。 它建立多个这样的决策树,然后将他们合并在一起以获得更准确和稳定的预测。 这样做最直接的事实是,在这一组独立的预测结果中,用投票方式得到一个最高投票结果,这个比单独使用最好模型预测的结果要好。

     我们通常将随机森林作为一个黑盒子,输入数据然后给出了预测结果,无需担心模型是如何计算的。这个黑盒子本身有几个我们可以摆弄的杠杆。 每个杠杆都能在一定程度上影响模型的性能或资源 -- 时间平衡。 在这篇文章中,我们将更多地讨论我们可以调整的杠杆,同时建立一个随机林模型。

    调整随机森林的参数/杠杆

    随机森林的参数即可以增加模型的预测能力,又可以使训练模型更加容易。 以下我们将更详细地谈论各个参数(请注意,这些参数,我使用的是Python常规的命名法):

    1.使模型预测更好的特征

    主要有3类特征可以被调整,以改善该模型的预测能力:

    A. max_features:

    随机森林允许单个决策树使用特征的最大数量。 Python为最大特征数提供了多个可选项。 下面是其中的几个:

    1. Auto/None :简单地选取所有特征,每颗树都可以利用他们。这种情况下,每颗树都没有任何的限制。

    2. sqrt :此选项是每颗子树可以利用总特征数的平方根个。 例如,如果变量(特征)的总数是100,所以每颗子树只能取其中的10个。“log2”是另一种相似类型的选项。

    3. 0.2:此选项允许每个随机森林的子树可以利用变量(特征)数的20%。如果想考察的特征x%的作用, 我们可以使用“0.X”的格式。

    max_features如何影响性能和速度?

    增加max_features一般能提高模型的性能,因为在每个节点上,我们有更多的选择可以考虑。 然而,这未必完全是对的,因为它降低了单个树的多样性,而这正是随机森林独特的优点。 但是,可以肯定,你通过增加max_features会降低算法的速度。 因此,你需要适当的平衡和选择最佳max_features。

    B. n_estimators:

    在利用最大投票数或平均值来预测之前,你想要建立子树的数量。 较多的子树可以让模型有更好的性能,但同时让你的代码变慢。 你应该选择尽可能高的值,只要你的处理器能够承受的住,因为这使你的预测更好更稳定。

    C. min_sample_leaf:

    如果您以前编写过一个决策树,你能体会到最小样本叶片大小的重要性。 叶是决策树的末端节点。 较小的叶子使模型更容易捕捉训练数据中的噪声。 一般来说,我更偏向于将最小叶子节点数目设置为大于50。在你自己的情况中,你应该尽量尝试多种叶子大小种类,以找到最优的那个。

    2.使得模型训练更容易的特征

    有几个属性对模型的训练速度有直接影响。 对于模型速度,下面是一些你可以调整的关键参数:

    A. n_jobs:

    这个参数告诉引擎有多少处理器是它可以使用。 “-1”意味着没有限制,而“1”值意味着它只能使用一个处理器。 下面是一个用Python做的简单实验用来检查这个指标:

    1.  
      %timeit
    2.  
      model = RandomForestRegressor(n_estimator = 100, oob_score = TRUE,n_jobs = 1,random_state =1)
    3.  
      model.fit(X,y)
    4.  
      Output ———- 1 loop best of 3 : 1.7 sec per loop
    5.  
       
    6.  
      %timeit
    7.  
      model = RandomForestRegressor(n_estimator = 100,oob_score = TRUE,n_jobs = -1,random_state =1)
    8.  
      model.fit(X,y)
    9.  
      Output ———- 1 loop best of 3 : 1.1 sec per loop

    “%timeit”是一个非常好的功能,他能够运行函数多次并给出了最快循环的运行时间。 这出来非常方便,同时将一个特殊的函数从原型扩展到最终数据集中。

    B. random_state:

    此参数让结果容易复现。 一个确定的随机值将会产生相同的结果,在参数和训练数据不变的情况下。 我曾亲自尝试过将不同的随机状态的最优参数模型集成,有时候这种方法比单独的随机状态更好。

    C. oob_score:

    这是一个随机森林交叉验证方法。 它和留一验证方法非常相似,但这快很多。 这种方法只是简单的标记在每颗子树中用的观察数据。 然后对每一个观察样本找出一个最大投票得分,是由那些没有使用该观察样本进行训练的子树投票得到

  • 相关阅读:
    免费试用Windows Azure云平台(无须提供信用卡)
    如何下载Ubuntu命令对应的源码
    Unix编程艺术——优化、工具、重用、可移植性、文档
    Choice of Xen Toolstacks
    [转]数据驱动编程之表驱动法
    获取Centos命令对应的源码
    Unix编程艺术——配置
    [转]vim ctags使用方法
    format and indent xml
    python得到本地网卡的IP
  • 原文地址:https://www.cnblogs.com/hai5111/p/11521393.html
Copyright © 2020-2023  润新知