本指南向您展示如何使用 Linkerd 和 Flagger 来自动化金丝雀部署与 A/B 测试。
前提条件
Flagger
需要 Kubernetes
集群 v1.16
或更新版本和 Linkerd 2.10
或更新版本。
安装 Linkerd the Prometheus
(Linkerd Viz
的一部分):
linkerd install | kubectl apply -f -
linkerd viz install | kubectl apply -f -
在 linkerd
命名空间中安装 Flagger
:
kubectl apply -k github.com/fluxcd/flagger//kustomize/linkerd
引导程序
Flagger
采用 Kubernetes deployment
和可选的水平 Pod 自动伸缩 (HPA
),然后创建一系列对象(Kubernetes
部署、ClusterIP
服务和 SMI
流量拆分)。这些对象将应用程序暴露在网格内部并驱动 Canary
分析和推广。
创建一个 test
命名空间并启用 Linkerd 代理注入:
kubectl create ns test
kubectl annotate namespace test linkerd.io/inject=enabled
安装负载测试服务以在金丝雀分析期间生成流量:
kubectl apply -k https://github.com/fluxcd/flagger//kustomize/tester?ref=main
创建部署和水平 pod autoscaler:
kubectl apply -k https://github.com/fluxcd/flagger//kustomize/podinfo?ref=main
为 podinfo
部署创建一个 Canary
自定义资源:
apiVersion: flagger.app/v1beta1
kind: Canary
metadata:
name: podinfo
namespace: test
spec:
# deployment reference
targetRef:
apiVersion: apps/v1
kind: Deployment
name: podinfo
# HPA reference (optional)
autoscalerRef:
apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
name: podinfo
# the maximum time in seconds for the canary deployment
# to make progress before it is rollback (default 600s)
progressDeadlineSeconds: 60
service:
# ClusterIP port number
port: 9898
# container port number or name (optional)
targetPort: 9898
analysis:
# schedule interval (default 60s)
interval: 30s
# max number of failed metric checks before rollback
threshold: 5
# max traffic percentage routed to canary
# percentage (0-100)
maxWeight: 50
# canary increment step
# percentage (0-100)
stepWeight: 5
# Linkerd Prometheus checks
metrics:
- name: request-success-rate
# minimum req success rate (non 5xx responses)
# percentage (0-100)
thresholdRange:
min: 99
interval: 1m
- name: request-duration
# maximum req duration P99
# milliseconds
thresholdRange:
max: 500
interval: 30s
# testing (optional)
webhooks:
- name: acceptance-test
type: pre-rollout
url: http://flagger-loadtester.test/
timeout: 30s
metadata:
type: bash
cmd: "curl -sd 'test' http://podinfo-canary.test:9898/token | grep token"
- name: load-test
type: rollout
url: http://flagger-loadtester.test/
metadata:
cmd: "hey -z 2m -q 10 -c 2 http://podinfo-canary.test:9898/"
将上述资源另存为 podinfo-canary.yaml
然后应用:
kubectl apply -f ./podinfo-canary.yaml
当 Canary
分析开始时,Flagger
将在将流量路由到 Canary
之前调用 pre-rollout webhooks
。 金丝雀分析将运行五分钟,同时每半分钟验证一次 HTTP
指标和 rollout(推出) hooks
。
几秒钟后,Flager
将创建 canary
对象:
# applied
deployment.apps/podinfo
horizontalpodautoscaler.autoscaling/podinfo
ingresses.extensions/podinfo
canary.flagger.app/podinfo
# generated
deployment.apps/podinfo-primary
horizontalpodautoscaler.autoscaling/podinfo-primary
service/podinfo
service/podinfo-canary
service/podinfo-primary
trafficsplits.split.smi-spec.io/podinfo
在 boostrap
之后,podinfo
部署将被缩放到零,
并且到 podinfo.test
的流量将被路由到主 pod
。
在 Canary
分析过程中,可以使用 podinfo-canary.test
地址直接定位 Canary Pod
。
自动金丝雀推进
Flagger
实施了一个控制循环,在测量 HTTP
请求成功率、请求平均持续时间和 Pod
健康状况等关键性能指标的同时,逐渐将流量转移到金丝雀。
根据对 KPI
的分析,提升或中止 Canary
,并将分析结果发布到 Slack
。
Flagger 金丝雀阶段
通过更新容器镜像触发金丝雀部署:
kubectl -n test set image deployment/podinfo
podinfod=stefanprodan/podinfo:3.1.1
Flagger
检测到部署修订已更改并开始新的部署:
kubectl -n test describe canary/podinfo
Status:
Canary Weight: 0
Failed Checks: 0
Phase: Succeeded
Events:
New revision detected! Scaling up podinfo.test
Waiting for podinfo.test rollout to finish: 0 of 1 updated replicas are available
Pre-rollout check acceptance-test passed
Advance podinfo.test canary weight 5
Advance podinfo.test canary weight 10
Advance podinfo.test canary weight 15
Advance podinfo.test canary weight 20
Advance podinfo.test canary weight 25
Waiting for podinfo.test rollout to finish: 1 of 2 updated replicas are available
Advance podinfo.test canary weight 30
Advance podinfo.test canary weight 35
Advance podinfo.test canary weight 40
Advance podinfo.test canary weight 45
Advance podinfo.test canary weight 50
Copying podinfo.test template spec to podinfo-primary.test
Waiting for podinfo-primary.test rollout to finish: 1 of 2 updated replicas are available
Promotion completed! Scaling down podinfo.test
请注意,如果您在 Canary
分析期间对部署应用新更改,Flagger
将重新开始分析。
金丝雀部署由以下任何对象的更改触发:
Deployment PodSpec
(容器镜像container image
、命令command
、端口ports
、环境env
、资源resources
等)ConfigMaps
作为卷挂载或映射到环境变量Secrets
作为卷挂载或映射到环境变量
您可以通过以下方式监控所有金丝雀:
watch kubectl get canaries --all-namespaces
NAMESPACE NAME STATUS WEIGHT LASTTRANSITIONTIME
test podinfo Progressing 15 2019-06-30T14:05:07Z
prod frontend Succeeded 0 2019-06-30T16:15:07Z
prod backend Failed 0 2019-06-30T17:05:07Z
自动回滚
在金丝雀分析期间,您可以生成 HTTP 500
错误和高延迟来测试 Flagger
是否暂停并回滚有故障的版本。
触发另一个金丝雀部署:
kubectl -n test set image deployment/podinfo
podinfod=stefanprodan/podinfo:3.1.2
使用以下命令执行负载测试器 pod
:
kubectl -n test exec -it flagger-loadtester-xx-xx sh
生成 HTTP 500
错误:
watch -n 1 curl http://podinfo-canary.test:9898/status/500
生成延迟:
watch -n 1 curl http://podinfo-canary.test:9898/delay/1
当失败的检查次数达到金丝雀分析阈值时,流量将路由回主服务器,金丝雀缩放为零,并将推出标记为失败。
kubectl -n test describe canary/podinfo
Status:
Canary Weight: 0
Failed Checks: 10
Phase: Failed
Events:
Starting canary analysis for podinfo.test
Pre-rollout check acceptance-test passed
Advance podinfo.test canary weight 5
Advance podinfo.test canary weight 10
Advance podinfo.test canary weight 15
Halt podinfo.test advancement success rate 69.17% < 99%
Halt podinfo.test advancement success rate 61.39% < 99%
Halt podinfo.test advancement success rate 55.06% < 99%
Halt podinfo.test advancement request duration 1.20s > 0.5s
Halt podinfo.test advancement request duration 1.45s > 0.5s
Rolling back podinfo.test failed checks threshold reached 5
Canary failed! Scaling down podinfo.test
自定义指标
Canary analysis
可以通过 Prometheus 查询进行扩展。
让我们定义一个未找到错误的检查。编辑 canary analysis
并添加以下指标:
analysis:
metrics:
- name: "404s percentage"
threshold: 3
query: |
100 - sum(
rate(
response_total{
namespace="test",
deployment="podinfo",
status_code!="404",
direction="inbound"
}[1m]
)
)
/
sum(
rate(
response_total{
namespace="test",
deployment="podinfo",
direction="inbound"
}[1m]
)
)
* 100
上述配置通过检查 HTTP 404 req/sec
百分比是否低于总流量的 3%
来验证金丝雀版本。
如果 404s
率达到 3%
阈值,则分析将中止,金丝雀被标记为失败。
通过更新容器镜像触发金丝雀部署:
kubectl -n test set image deployment/podinfo
podinfod=stefanprodan/podinfo:3.1.3
生成 404
:
watch -n 1 curl http://podinfo-canary:9898/status/404
监视 Flagger
日志:
kubectl -n linkerd logs deployment/flagger -f | jq .msg
Starting canary deployment for podinfo.test
Pre-rollout check acceptance-test passed
Advance podinfo.test canary weight 5
Halt podinfo.test advancement 404s percentage 6.20 > 3
Halt podinfo.test advancement 404s percentage 6.45 > 3
Halt podinfo.test advancement 404s percentage 7.22 > 3
Halt podinfo.test advancement 404s percentage 6.50 > 3
Halt podinfo.test advancement 404s percentage 6.34 > 3
Rolling back podinfo.test failed checks threshold reached 5
Canary failed! Scaling down podinfo.test
如果您配置了 Slack
,Flager
将发送一条通知,说明金丝雀失败的原因。
Linkerd Ingress
有两个入口控制器与 Flagger
和 Linkerd
兼容:NGINX
和 Gloo
。
安装 NGINX:
helm upgrade -i nginx-ingress stable/nginx-ingress
--namespace ingress-nginx
为 podinfo
创建一个 ingress
定义,将传入标头重写为内部服务名称(Linkerd
需要):
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: podinfo
namespace: test
labels:
app: podinfo
annotations:
kubernetes.io/ingress.class: "nginx"
nginx.ingress.kubernetes.io/configuration-snippet: |
proxy_set_header l5d-dst-override $service_name.$namespace.svc.cluster.local:9898;
proxy_hide_header l5d-remote-ip;
proxy_hide_header l5d-server-id;
spec:
rules:
- host: app.example.com
http:
paths:
- backend:
serviceName: podinfo
servicePort: 9898
使用 ingress controller
时,Linkerd
流量拆分不适用于传入流量,因为 NGINX
在网格之外运行。 为了对前端应用程序运行金丝雀分析,Flagger
创建了一个 shadow ingress
并设置了 NGINX 特定的注释(annotations
)。
A/B 测试
除了加权路由,Flagger
还可以配置为根据 HTTP
匹配条件将流量路由到金丝雀。 在 A/B
测试场景中,您将使用 HTTP headers
或 cookies
来定位您的特定用户群。 这对于需要会话关联的前端应用程序特别有用。
Flagger Linkerd Ingress
编辑 podinfo
金丝雀分析,将提供者设置为 nginx
,添加 ingress
引用,移除 max/step
权重并添加匹配条件和 iterations
:
apiVersion: flagger.app/v1beta1
kind: Canary
metadata:
name: podinfo
namespace: test
spec:
# ingress reference
provider: nginx
ingressRef:
apiVersion: extensions/v1beta1
kind: Ingress
name: podinfo
targetRef:
apiVersion: apps/v1
kind: Deployment
name: podinfo
autoscalerRef:
apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
name: podinfo
service:
# container port
port: 9898
analysis:
interval: 1m
threshold: 10
iterations: 10
match:
# curl -H 'X-Canary: always' http://app.example.com
- headers:
x-canary:
exact: "always"
# curl -b 'canary=always' http://app.example.com
- headers:
cookie:
exact: "canary"
# Linkerd Prometheus checks
metrics:
- name: request-success-rate
thresholdRange:
min: 99
interval: 1m
- name: request-duration
thresholdRange:
max: 500
interval: 30s
webhooks:
- name: acceptance-test
type: pre-rollout
url: http://flagger-loadtester.test/
timeout: 30s
metadata:
type: bash
cmd: "curl -sd 'test' http://podinfo-canary:9898/token | grep token"
- name: load-test
type: rollout
url: http://flagger-loadtester.test/
metadata:
cmd: "hey -z 2m -q 10 -c 2 -H 'Cookie: canary=always' http://app.example.com"
上述配置将运行 10
分钟的分析,目标用户是:canary
cookie 设置为 always
或使用 X-Canary: always
header
调用服务。
请注意,负载测试现在针对外部地址并使用 canary cookie
。
通过更新容器镜像触发金丝雀部署:
kubectl -n test set image deployment/podinfo
podinfod=stefanprodan/podinfo:3.1.4
Flagger
检测到部署修订已更改并开始 A/B
测试:
kubectl -n test describe canary/podinfo
Events:
Starting canary deployment for podinfo.test
Pre-rollout check acceptance-test passed
Advance podinfo.test canary iteration 1/10
Advance podinfo.test canary iteration 2/10
Advance podinfo.test canary iteration 3/10
Advance podinfo.test canary iteration 4/10
Advance podinfo.test canary iteration 5/10
Advance podinfo.test canary iteration 6/10
Advance podinfo.test canary iteration 7/10
Advance podinfo.test canary iteration 8/10
Advance podinfo.test canary iteration 9/10
Advance podinfo.test canary iteration 10/10
Copying podinfo.test template spec to podinfo-primary.test
Waiting for podinfo-primary.test rollout to finish: 1 of 2 updated replicas are available
Promotion completed! Scaling down podinfo.test
公众号:黑客下午茶