• 140. Word Break II


    问题:

    给定一个字符串,和一个字典,将字符串切分后,每部分都是字典中字符串,求所有切分可能。

    Example 1:
    Input:
    s = "catsanddog"
    wordDict = ["cat", "cats", "and", "sand", "dog"]
    Output:
    [
      "cats and dog",
      "cat sand dog"
    ]
    
    Example 2:
    Input:
    s = "pineapplepenapple"
    wordDict = ["apple", "pen", "applepen", "pine", "pineapple"]
    Output:
    [
      "pine apple pen apple",
      "pineapple pen apple",
      "pine applepen apple"
    ]
    Explanation: Note that you are allowed to reuse a dictionary word.
    
    Example 3:
    Input:
    s = "catsandog"
    wordDict = ["cats", "dog", "sand", "and", "cat"]
    Output:
    []
    

      

    解法:Backtracking(回溯算法)DFS(深度优先搜索)

    简单的回溯,会超时。

    • path:到当前位置截止,切分的结果。
    • opt:从当前位置,到n个字符所得字符串在字典中,则为符合条件选择。加入path。
    • 结束条件:当前位置=s.size。将path加入res。

    代码参考:

     1 class Solution {
     2 public:
     3     void backtrack(vector<string>& res, string path, int pos, string s, unordered_set<string>& wordSet) {
     4         if(pos == s.size()) {
     5             path.pop_back();
     6             res.push_back(path);
     7             return;
     8         }
     9         for(int i=pos+1; i<=s.size(); i++) {
    10             string tmp = s.substr(pos, i-pos);
    11             if(wordSet.count(tmp)!=0) {
    12                 backtrack(res, path+tmp+" ", i, s, wordSet);
    13             }
    14         }
    15         return;
    16     }
    17     vector<string> wordBreak(string s, vector<string>& wordDict) {
    18         unordered_set<string> wordSet(wordDict.begin(), wordDict.end());
    19         vector<string> res;
    20         string path;
    21         backtrack(res, path, 0, s, wordSet);
    22         return res;
    23     }
    24 };

    DFS:

    递归函数:对每个子字符串,返回要求的所有切分可能。vector<string> res

    ♻️ 优化方法:在递归中,可能出现重复字符串的求解,因此,使用map,对结果进行保存,每次递归,先check是否已经求解过该字符串s,有的话,之间返回map[s]

    1.每次将所求字符串拆分为:尾部字符串endstr,和头部字符串headstr

    2.首先,如果尾部字符串=本字符串全部,刚好在字典中,则res+={【endstr】}

    3.for 尾部字符串:i~size(i:0~size-1)

            subres = 余下头部字符串 headstr去求递归。

            res += 【每个subres + “ ” + endstr】

    4.将当前res存入map,map[s]=res

    返回res。

    代码参考:

     1 class Solution {
     2 public:
     3     vector<string> DFS(string s, unordered_map<string, vector<string>>& m, unordered_set<string>& wordSet) {
     4         if(m.count(s)) return m[s];
     5         vector<string> res;
     6         if(wordSet.count(s)) {
     7             res.push_back(s);
     8         }
     9         for(int i=0; i<s.size(); i++) {
    10             string endstr = s.substr(i);
    11             if(wordSet.count(endstr)) {
    12                 string headstr = s.substr(0, i);
    13                 vector<string> subres = DFS(headstr, m, wordSet);
    14                 for(string path: subres) {
    15                     res.push_back(path+" "+endstr);
    16                 }
    17             }
    18         }
    19         m[s] = res;
    20         return res;
    21     }
    22     vector<string> wordBreak(string s, vector<string>& wordDict) {
    23         unordered_set<string> wordSet(wordDict.begin(), wordDict.end());
    24         unordered_map<string, vector<string>> m;
    25         vector<string> res;
    26         res = DFS(s, m, wordSet);
    27         return res;
    28     }
    29 };
  • 相关阅读:
    资源列表
    资源列表
    编程语言资源列表
    PyTorch简介
    Keras构建回归神经网络
    Keras简介
    Tensorflow之RNN,LSTM
    Tensorflow之CNN
    Tensorflow之dropout
    Tensorflow做分类
  • 原文地址:https://www.cnblogs.com/habibah-chang/p/14254330.html
Copyright © 2020-2023  润新知