Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
Example:
Input:s = 7, nums = [2,3,1,2,4,3]
Output: 2 Explanation: the subarray[4,3]
has the minimal length under the problem constraint.
Follow up:
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).
Approach #1:
class Solution { public: int minSubArrayLen(int s, vector<int>& nums) { int len = nums.size(); if (len == 0) return 0; int ans = INT_MAX; vector<int> sum(len+1, 0); for (int i = 1; i <= len; ++i) sum[i] = sum[i-1] + nums[i-1]; for (int i = 0; i < len; ++i) { int to_find = s + sum[i-1]; auto bound = lower_bound(sum.begin(), sum.end(), to_find); if (bound != sum.end()) { ans = min(ans, static_cast<int>(bound - (sum.begin() + i - 1))); } } return (ans != INT_MAX) ? ans : 0; } };
Runtime: 8 ms, faster than 98.81% of C++ online submissions for Minimum Size Subarray Sum.
Approach #2: Using two pointer:
class Solution { public: int minSubArrayLen(int s, vector<int>& nums) { int len = nums.size(); if (len == 0) return 0; int ans = INT_MAX; int sum = 0; int left = 0; for (int i = 0; i < len; ++i) { sum += nums[i]; while (sum >= s) { ans = min(ans, i+1-left); sum -= nums[left++]; } } return (ans != INT_MAX) ? ans : 0; } };
Runtime: 8 ms, faster than 98.81% of C++ online submissions for Minimum Size Subarray Sum.