• POJ 1330 Nearest Common Ancestors(lca)


     POJ 1330 Nearest Common Ancestors

    A rooted tree is a well-known data structure in computer science and engineering. An example is shown below: 

     
    In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is. 

    For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y. 

    Write a program that finds the nearest common ancestor of two distinct nodes in a tree. 

    Input

    The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

    Output

    Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

    Sample Input

    2
    16
    1 14
    8 5
    10 16
    5 9
    4 6
    8 4
    4 10
    1 13
    6 15
    10 11
    6 7
    10 2
    16 3
    8 1
    16 12
    16 7
    5
    2 3
    3 4
    3 1
    1 5
    3 5
    

    Sample Output

    4
    3
    

     一道关于LCA的算法题,太弱的我不会做。贴出大神的AC代码,仅供参考学习

    #include<iostream>
    #include<vector>
    #define MAX 10010
    using namespace std;
    
    int n,flag;
    int f[MAX],r[MAX],ancestor[MAX];
    int indegreen[MAX],vis[MAX];
    vector<int> head[MAX],Que[MAX];
    
    void Init()
    {
        int i,a,b;
        cin>>n;
        flag=0;
        for(i=1;i<=n;i++)
        {
            head[i].clear();
            Que[i].clear();
            f[i]=i;
            r[i]=1;
            ancestor[i]=0;
            indegreen[i]=0;
            vis[i]=0;
        }
        for(i=1;i<n;i++)
        {
            cin>>a>>b;
            head[a].push_back(b);
            indegreen[b]++;
        }
        cin>>a>>b;
        Que[a].push_back(b);
        Que[b].push_back(a);
    }
    
    int Find(int u)
    {
        if(f[u]==u)
            return f[u];
        else
            f[u]=Find(f[u]);
        return f[u];
    }
    
    void Union(int v,int u)
    {
        int a,b;
        a=Find(v);
        b=Find(u);
        if(a==b)
            return ;    
        if(r[a]<=r[b])
        {
            f[a]=b;
            r[b]+=r[a];
        }
        else
        {
            f[b]=a;
            r[a]+=r[b];
        }
    }
    
    void LCA(int k)
    {
        int i,size;
        size=head[k].size();
        ancestor[k]=k;    
        for(i=0;i<size;i++)
        {
            if(flag)
                break;
            LCA(head[k][i]);
            Union(k,head[k][i]);
            ancestor[Find(k)]=k;
        }
        vis[k]=1;    
        size=Que[k].size();
        for(i=0;i<size;i++)
        {
            if(vis[Que[k][i]])
            {
                flag=1;
                cout<<ancestor[Find(Que[k][i])]<<endl;
                return ;
            }
        }
    }
    
    int main()
    {
        int T;
        cin>>T;
        while(T--)
        {
            Init();
            for(int i=1;i<=n;i++)
            {
                if(!indegreen[i])
                {
                    LCA(i);
                    break;
                }
            }
        }
        return 0;
    }
    

      

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    第四十七课、父子间的冲突
    第四十六课、继承中的构造与析构
    第四十五课、不同的继承方式
    第四十四课、继承中的访问级别
    第四十三课、继承的概念和意义
    第四十二课、类型转换函数(下)
    第四十一课、类型转化构造函数(上)
    暴力大法好
    HideProcess
    Hduacm—5497
  • 原文地址:https://www.cnblogs.com/h-hkai/p/7632978.html
Copyright © 2020-2023  润新知